[go: up one dir, main page]

login
Revision History for A341382 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
G.f. A(x) satisfies: A(x) = P(x)/Q(x) where P(x) = Sum_{n>=0} (n+1)*x^n*A(x)^n/(1 - x*A(x)^(n+1)) and Q(x) = Sum_{n>=0} x^n*A(x)^n/(1 - x*A(x)^(n+1)).
(history; published version)
#6 by Paul D. Hanna at Thu Feb 11 10:31:28 EST 2021
STATUS

editing

approved

#5 by Paul D. Hanna at Thu Feb 11 10:31:24 EST 2021
FORMULA

P(x) = Sum_{n>=0} (n+1) * x^n * A(x)^n / (1 - x*A(x)^(n+1)) and

Q(x) = Sum_{n>=0} x^n * A(x)^n / (1 - x*A(x)^(n+1)).

P(x) = Sum_{n>=0} x^n * A(x)^n / (1 - x*A(x)^(n+1))^2 and

Q(x) = Sum_{n>=0} x^n * A(x)^n / (1 - x*A(x)^(n+1)).

EXAMPLE

P(x) = 1/(1-x*A(x)) + 2*x*A(x)/(1 - x*A(x)^2) + 3*x^2*A(x)^2/(1 - x*A(x)^23) + 4*x^3*A(x)^3/(1 - x*A(x)^34) + 5*x^4*A(x)^4/(1 - x*A(x)^4) + 6*x^5*A(x)^5/(1 - x*A(x)^5) + ...

Q(x) = 1/(1-x*A(x)) + x*A(x)/(1 - x*A(x)^2) + x^2*A(x)^2/(1 - x*A(x)^23) + x^3*A(x)^3/(1 - x*A(x)^34) + x^4*A(x)^4/(1 - x*A(x)^4) + x^5*A(x)^5/(1 - x*A(x)^4) + ...

P(x) = 1/(1-x*A(x))^2 + x*A(x)/(1 - x*A(x)^2)^2 + x^2*A(x)^2/(1 - x*A(x)^23)^2 + x^3*A(x)^3/(1 - x*A(x)^34)^2 + x^4*A(x)^4/(1 - x*A(x)^4)^2 + x^5*A(x)^5/(1 - x*A(x)^5)^2 + ...

STATUS

approved

editing

#4 by Bruno Berselli at Wed Feb 10 11:38:12 EST 2021
STATUS

proposed

approved

#3 by Paul D. Hanna at Wed Feb 10 11:28:47 EST 2021
STATUS

editing

proposed

#2 by Paul D. Hanna at Wed Feb 10 11:28:35 EST 2021
NAME

allocated for Paul D. Hanna

G.f. A(x) satisfies: A(x) = P(x)/Q(x) where P(x) = Sum_{n>=0} (n+1)*x^n*A(x)^n/(1 - x*A(x)^(n+1)) and Q(x) = Sum_{n>=0} x^n*A(x)^n/(1 - x*A(x)^(n+1)).

DATA

1, 1, 2, 6, 22, 91, 407, 1921, 9429, 47683, 246901, 1303346, 6992087, 38031159, 209348857, 1164616227, 6540112446, 37040976542, 211423703225, 1215450693258, 7034282005208, 40966313765380, 240003678300088, 1414101405300096

OFFSET

0,3

FORMULA

G.f. A(x) satisfies:

(1) A(x) = P(x)/Q(x) where

P(x) = Sum_{n>=0} (n+1) * x^n * A(x)^n / (1 - x*A(x)^n) and

Q(x) = Sum_{n>=0} x^n * A(x)^n / (1 - x*A(x)^n).

(2) A(x) = P(x)/Q(x) where

P(x) = Sum_{n>=0} x^n * A(x)^n / (1 - x*A(x)^n)^2 and

Q(x) = Sum_{n>=0} x^n * A(x)^n / (1 - x*A(x)^n).

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 22*x^4 + 91*x^5 + 407*x^6 + 1921*x^7 + 9429*x^8 + 47683*x^9 + 246901*x^10 + 1303346*x^11 + 6992087*x^12 + ...

such that A(x) = P(x)/Q(x) where

P(x) = 1/(1-x) + 2*x*A(x)/(1 - x*A(x)) + 3*x^2*A(x)^2/(1 - x*A(x)^2) + 4*x^3*A(x)^3/(1 - x*A(x)^3) + 5*x^4*A(x)^4/(1 - x*A(x)^4) + 6*x^5*A(x)^5/(1 - x*A(x)^5) + ...

Q(x) = 1/(1-x) + x*A(x)/(1 - x*A(x)) + x^2*A(x)^2/(1 - x*A(x)^2) + x^3*A(x)^3/(1 - x*A(x)^3) + x^4*A(x)^4/(1 - x*A(x)^4) + x^5*A(x)^5/(1 - x*A(x)^4) + ...

also

P(x) = 1/(1-x)^2 + x*A(x)/(1 - x*A(x))^2 + x^2*A(x)^2/(1 - x*A(x)^2)^2 + x^3*A(x)^3/(1 - x*A(x)^3)^2 + x^4*A(x)^4/(1 - x*A(x)^4)^2 + x^5*A(x)^5/(1 - x*A(x)^5)^2 + ...

explicitly,

P(x) = 1 + 3*x + 9*x^2 + 30*x^3 + 111*x^4 + 448*x^5 + 1937*x^6 + 8837*x^7 + 42046*x^8 + 206821*x^9 + 1044977*x^10 + 5397263*x^11 + ...

Q(x) = 1 + 2*x + 5*x^2 + 15*x^3 + 52*x^4 + 201*x^5 + 843*x^6 + 3760*x^7 + 17579*x^8 + 85259*x^9 + 425772*x^10 + 2177369*x^11 + ...

PROG

(PARI) {a(n) = my(A=1+x+x*O(x^n), P=1, Q=1); for(i=0, n,

P = sum(m=0, n, (m+1)*x^m*A^m/(1 - x*A^(m+1) + x*O(x^n)) );

Q = sum(m=0, n, x^m*A^m/(1 - x*A^(m+1) + x*O(x^n)) );

A = P/Q); polcoeff(H=A, n)}

for(n=0, 30, print1(a(n), ", "))

(PARI) {a(n) = my(A=1+x+x*O(x^n), P=1, Q=1); for(i=0, n,

P = sum(m=0, n, x^m*A^m/(1 - x*A^(m+1) + x*O(x^n))^2 );

Q = sum(m=0, n, x^m*A^m/(1 - x*A^(m+1) + x*O(x^n)) );

A = P/Q); polcoeff(H=A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A341342.

KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna, Feb 10 2021

STATUS

approved

editing

#1 by Paul D. Hanna at Wed Feb 10 11:23:43 EST 2021
NAME

allocated for Paul D. Hanna

KEYWORD

allocated

STATUS

approved