proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
Andrew Howroyd, <a href="/A323867/b323867.txt">Table of n, a(n) for n = 0..200</a>
(GAP) List([0..30], A323867); # See A323861 for code; Andrew Howroyd, Aug 21 2019
1, 1, 1, 5, 11, 33, 57, 157, 303, 683, 1358, 2974, 5932, 12560, 25328, 52400, 106256, 217875, 441278, 899955, 1822703, 3701401, 7491173, 15178253, 30691135, 62085846, 125435689, 253414326, 511547323, 1032427635, 2082551931, 4199956099, 8466869525, 17064777665
nonn,more
nonn
Terms a(16) and beyond from Andrew Howroyd, Aug 21 2019
approved
editing
proposed
approved
editing
proposed
allocated for Gus WisemanNumber of aperiodic arrays of positive integers summing to n.
1, 1, 1, 5, 11, 33, 57, 157, 303, 683, 1358, 2974, 5932, 12560, 25328, 52400
0,4
The 1-dimensional case is A000740.
An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.
The a(5) = 33 arrays:
5 14 23 32 41 113 122 131 212 221 311 1112 1121 1211 2111
.
1 2 3 4 11 11 12 21
4 3 2 1 12 21 11 11
.
1 1 1 2 2 3
1 2 3 1 2 1
3 2 1 2 1 1
.
1 1 1 2
1 1 2 1
1 2 1 1
2 1 1 1
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m, {i, j}], {i, Length[m]}, {j, Length[First[m]]}];
Table[Length[Union@@Table[Select[ptnmats[k], apermatQ], {k, Times@@Prime/@#&/@IntegerPartitions[n]}]], {n, 15}]
allocated
nonn,more
Gus Wiseman, Feb 04 2019
approved
editing
allocated for Gus Wiseman
allocated
approved