[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A327940 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of e.g.f. exp(Sum_{i>=1} Sum_{j=1..i-1} x^(i*j) / (i*j)).
(history; published version)
#4 by Vaclav Kotesovec at Sun Oct 06 03:56:17 EDT 2019
STATUS

proposed

approved

#3 by Ilya Gutkovskiy at Mon Sep 30 14:22:48 EDT 2019
STATUS

editing

proposed

#2 by Ilya Gutkovskiy at Mon Sep 30 13:53:58 EDT 2019
NAME

allocated for Ilya Gutkovskiy

Expansion of e.g.f. exp(Sum_{i>=1} Sum_{j=1..i-1} x^(i*j) / (i*j)).

DATA

1, 0, 1, 2, 9, 44, 385, 1854, 23233, 153656, 2151441, 18787130, 338487721, 3165541092, 60609811249, 835202858294, 14913805143105, 228441779869424, 5319673396479073, 81040768940877426, 2153026504862728201, 39759334398324543260, 988919906784578473761

OFFSET

0,4

FORMULA

E.g.f.: exp(Sum_{k>=1} floor(A000005(k)/2) * x^k / k).

E.g.f.: exp(Sum_{k>=1} A056924(k) * x^k / k).

E.g.f.: Product_{k>=1} 1 / (1 - x^A026424(k))^(1/A026424(k)).

MATHEMATICA

nmax = 22; CoefficientList[Series[Exp[Sum[Floor[DivisorSigma[0, k]/2] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

a[n_] := a[n] = If[n == 0, 1, Sum[Floor[DivisorSigma[0, k]/2] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]

KEYWORD

allocated

nonn

AUTHOR

Ilya Gutkovskiy, Sep 30 2019

STATUS

approved

editing

#1 by Ilya Gutkovskiy at Mon Sep 30 13:53:58 EDT 2019
NAME

allocated for Ilya Gutkovskiy

KEYWORD

allocated

STATUS

approved