[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A326795 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
E.g.f. B(x) = B(x,x), where B(x,y) is the e.g.f. of triangle A326798.
(history; published version)
#4 by Bruno Berselli at Tue Aug 06 06:17:39 EDT 2019
STATUS

proposed

approved

#3 by Paul D. Hanna at Mon Aug 05 22:20:26 EDT 2019
STATUS

editing

proposed

#2 by Paul D. Hanna at Mon Aug 05 22:20:24 EDT 2019
NAME

allocated for Paul DE.g.f. B(x) = B(x,x), where B(x,y) is the e.g.f. of triangle A326798. Hanna

DATA

1, -1, 1, 119, -671, -118801, 1578721, 472546983, -11434861759, -5281001286433, 202651641610561, 134214161576815319, -7489030360212947039, -6743315366908570697521, 515685193530081985152289, 606502419281376583942534919, -60891202949811176406832459647, -90683512562992732210541162641985, 11568533431831545319762169579235457, 21284623320002783970199662076124812599

OFFSET

0,4

COMMENTS

Equals the row sums of triangle A326798.

FORMULA

E.g.f. B(x) and related functions A(x) and C(x), defined by A326794 and A326796, respectively, satisfy:

(1) A(x)^2 + B(x)^2 + C(x)^2 = 1,

(2) A(x)*A'(x) + B(x)*B'(x) + C(x)*C'(x) = 0.

EXAMPLE

E.g.f.: B(x) = 1 - x^2/2! + x^4/4! + 119*x^6/6! - 671*x^8/8! - 118801*x^10/10! + 1578721*x^12/12! + 472546983*x^14/14! - 11434861759*x^16/16! - 5281001286433*x^18/18! + 202651641610561*x^20/20! + ....

PROG

(PARI) {a(n) = my(Ax=x, Bx=1, Cx=x, Ay=y, By=y, Cy=1);

for(i=0, 2*n+1,

Ax = 0 + intformal( Bx*Cy - Cx*By, x) + O(x^(2*n+2));

Bx = 1 + intformal( Cx*Ay - Ax*Cy, x) + O(x^(2*n+2));

Cx = 0 + intformal( Ax*By - Bx*Ay, x) + O(x^(2*n+2));

Ay = 0 + intformal( By*Cx - Cy*Bx, y) + O(y^(2*n+2));

By = 0 + intformal( Cy*Ax - Ay*Cx, y) + O(y^(2*n+2));

Cy = 1 + intformal( Ay*Bx - By*Ax, y) + O(y^(2*n+2));

);

sum(k=0, n\2, (2*n)! * polcoeff( polcoeff(Bx, 2*n-2*k, x), 2*k, y))}

for(n=0, 20, print1( a(n), ", "))

CROSSREFS
KEYWORD

allocated

sign

AUTHOR

Paul D. Hanna, Aug 05 2019

STATUS

approved

editing

#1 by Paul D. Hanna at Thu Jul 25 23:27:10 EDT 2019
NAME

allocated for Paul D. Hanna

KEYWORD

allocated

STATUS

approved