[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A290595 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

newer changes | Showing entries 11-13
Triangle T(n, k) read by rows: row n gives the coefficients of the numerator polynomials of the o.g.f. of the (n+1)-th diagonal of the Sheffer triangle A286718 (|S1hat[3,1]| generalized Stirling 1), for n >= 0.
(history; published version)
#3 by Wolfdieter Lang at Tue Aug 08 12:21:11 EDT 2017
NAME

allocated Triangle T(n, k) read by rows: row n gives the coefficients of the numerator polynomials of the o.g.f. of the (n+1)-th diagonal of the Sheffer triangle A286718 (|S1hat[3,1]| generalized Stirling 1), for Wolfdieter Langn >= 0.

DATA

1, 1, 2, 4, 19, 4, 28, 222, 147, 8, 280, 3194, 4128, 887, 16, 3640, 55024, 113566, 52538, 4835, 32, 58240, 1107336, 3268788, 2562676, 555684, 25167, 64, 1106560, 25526192, 100544412, 117517960, 45415640, 5301150, 128203, 128, 24344320, 663605680, 3325767376, 5352311764, 3189383200, 695714590, 47537320, 646519, 256, 608608000, 19213911360, 118361719296, 248493947496, 208996478388, 72479948400, 9696965250, 410038434, 3245139, 512

OFFSET

0,3

COMMENTS

The ordinary generating function (o.g.f.) of the (n+1)-th diagonal sequence of the Sheffer triangle A286718 = ((1 - 3*x)^(-1/3), -log(1 - 3*x)/3), called |S1hat[3,1]|, is GD(3,1;n,x) = P(n, x)/(1 - x)^(2*n+1), with the row polynomials P(n, x) = Sum_{k=0..n} T(n, k)*x^k, n >= 0.

For the two parameter Sheffer case |S1hat[d,a]| = ((1 - d*x)^{-a/d}, -log(1 - d*x)/d) (with gcd(d,a) = 1, d >=0, a >= 0, and for d = 1 one takes a = 0) the e.g.f. ED(t, x) of the o.g.f.s {GD(d,a;n,x)}_{n>=0} of the diagonal sequences with elements D(d,a;n,m) = |S1hat[d,a]|(n+m, m) (n=0 for the main diagonal) is of interest. It can be computed via Lagrange's theorem. For the special Sheffer case (1, f(x)) this has been done by P. Bala (see the link). This method can be generalized for Sheffer (g(x), f(x)), as shown in the W. Lang link.

LINKS

P. Bala, <a href="/A112007/a112007.txt">Diagonals of triangles with generating function exp(t*F(x)).</a>

Wolfdieter Lang, <a href="http://arxiv.org/abs/1708.01421">On Generating functions of Diagonal Sequences of Sheffer and Riordan Number Triangles</a>, arXiv:1708.01421 [math.NT], August 2017.

FORMULA

T(n, k) = [x^k] P(n, x) with the numerator polynomials of the o.g.f. GD(n, x) = P(n, x)/(1-x)^(2*n+1) of the (n+1)-th diagonal sequence of the triangle A286718. See a comment above.

EXAMPLE

The triangle T(n, k) begins:

n\k 0 1 2 3 4 5 6 7 ...

0: 1

1: 1 2

2: 4 19 4

3: 28 222 147 8

4: 280 3194 4128 887 16

5: 3640 55024 113566 52538 4835 32

6: 58240 1107336 3268788 2562676 555684 25167 6

7: 1106560 25526192 100544412 117517960 45415640 5301150 128203 128

...

n = 8: 24344320 663605680 3325767376 5352311764 3189383200 695714590 47537320 646519 256,

n = 9: 608608000 19213911360 118361719296 248493947496 208996478388 72479948400 9696965250 410038434 3245139 512.

n = 3: The o.g.f. of the 4-th diagonal sequence of A286718, [28, 418, 2485, ...] = A024213(n+1), n >= 0, is P(3, x) = (28 + 222*x + 147*x^2 + 8*x^3)/(1 - 3*x)^7.

CROSSREFS

Cf. A024213, A286718, A288875 ([2,1] case).

KEYWORD

allocated

nonn,tabl

AUTHOR

Wolfdieter Lang, Aug 08 2017

STATUS

approved

editing

#2 by Wolfdieter Lang at Mon Aug 07 11:46:29 EDT 2017
KEYWORD

allocating

allocated

#1 by Wolfdieter Lang at Mon Aug 07 11:46:29 EDT 2017
NAME

allocated for Wolfdieter Lang

KEYWORD

allocating

STATUS

approved