[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A295813 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
G.f. A(x) satisfies: G(A(x)) = exp(x), where G(x) equals the e.g.f. of A296172.
(history; published version)
#8 by Vaclav Kotesovec at Tue Oct 13 11:51:09 EDT 2020
STATUS

editing

approved

#7 by Vaclav Kotesovec at Tue Oct 13 11:50:45 EDT 2020
FORMULA

a(n) ~ sqrt(1-c) * 3^(3*n - 3) * n^(2*n - 7/2) / (sqrt(2*Pi) * c^n * (3-c)^(2*n - 3) * exp(2*n)), where c = -LambertW(-3*exp(-3)) = -A226750. - Vaclav Kotesovec, Oct 13 2020

STATUS

approved

editing

#6 by Paul D. Hanna at Sat Dec 09 22:08:44 EST 2017
STATUS

editing

approved

#5 by Paul D. Hanna at Sat Dec 09 22:08:41 EST 2017
CROSSREFS
STATUS

approved

editing

#4 by Paul D. Hanna at Sat Dec 09 19:39:25 EST 2017
STATUS

editing

approved

#3 by Paul D. Hanna at Sat Dec 09 19:39:20 EST 2017
LINKS

Paul D. Hanna, <a href="/A295813/b295813.txt">Table of n, a(n) for n = 1..200</a>

#2 by Paul D. Hanna at Sat Dec 09 19:31:36 EST 2017
NAME

allocated for Paul DG.f. A(x) satisfies: G(A(x)) = exp(x), where G(x) equals the e.g.f. of A296172. Hanna

DATA

1, 3, 48, 3271, 575163, 185377116, 93039467356, 66505075585875, 63970743282062646, 79580632411431634441, 124299284968805234137968, 238188439678208173206500760, 549611050835556942751087049225, 1503700734638162443238902233252144, 4814751647416985610768723994195186728, 17841762828286483988438913318683740082187, 75777421917902616009655480827109144353730842

OFFSET

1,2

COMMENTS

E.g.f. G(x) of A296172 satisfies: [x^(n-1)] G(x)^(n^3) = [x^n] G(x)^(n^3) for n>=1.

FORMULA

G.f. is the series reversion of the logarithm of the e.g.f. of A296172.

EXAMPLE

G.f.: A(x) = x + 3*x^2 + 48*x^3 + 3271*x^4 + 575163*x^5 + 185377116*x^6 + 93039467356*x^7 + 66505075585875*x^8 + 63970743282062646*x^9 + 79580632411431634441*x^10 + 124299284968805234137968*x^11 + 238188439678208173206500760*x^12 +...

The series reversion equals the logarithm of the e.g.f. of A296172, which begins:

Series_Reversion(A(x)) = x - 3*x^2 - 30*x^3 - 2686*x^4 - 517311*x^5 - 173118807*x^6 - 88535206152*x^7 - 63977172334344*x^8 - 61971659588102940*x^9 - 77470793599569049440*x^10 - 121439997599825393413344*x^11 - 233353875172602479932391040*x^12 +...+ A296173(n)*x^n +...

PROG

(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^3)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^3 ); polcoeff(serreverse(log(Ser(A))), n)}

for(n=1, 30, print1(a(n), ", "))

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna, Dec 09 2017

STATUS

approved

editing

#1 by Paul D. Hanna at Mon Nov 27 23:14:21 EST 2017
NAME

allocated for Paul D. Hanna

KEYWORD

allocated

STATUS

approved