[go: up one dir, main page]

login
Revision History for A285323 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

newer changes | Showing entries 11-20
#10 by Antti Karttunen at Wed Apr 19 16:08:05 EDT 2017
STATUS

editing

proposed

#9 by Antti Karttunen at Wed Apr 19 16:07:40 EDT 2017
PROG

(define (A285323 n) (cond ((zero? n) 1) ((or (= 1 (A000120 n)) (> (A000040 (+ 1 (A285099 n))) (A000290 (A000040 (+ 1 (A007814 n)))))) (A000290 (A020639 (A019565 n)))) (else (A014673 (A019565 n)))))

#8 by Antti Karttunen at Wed Apr 19 15:26:20 EDT 2017
COMMENTS

The sequence is completely determined by the positions of two least significant 1-bits of n: After initial zero, if n is a power of two (only one 1-bit present) or if prime(1+A285099(n)) > prime(1+A007814(n))^2, a(n) = prime(1+A007814(n))^2, = A020639(A019565(n))^2, otherwise a(n) = prime(1+A285099(n)) = A014673(A019565(n)).

PROG

(define (A285323 n) (cond ((zero? n) 1) ((or (= 1 (A000120 n)) (> (A000040 (+ 1 (A285099 n))) (A000290 (A000040 (+ 1 (A007814 n)))))) (A000290 (A020639 (A019565 n)))) (else (A014673 (A019565 n)))))

#7 by Antti Karttunen at Wed Apr 19 15:23:00 EDT 2017
COMMENTS

The sequence is completely determined by the positions of two least significant 1-bits of n: After initial zero, if n is a power of two (only one 1-bit present) or if prime(1+A285099(n)) > prime(1+A007814(n))^2, a(n) = prime(1+A007814(n))^2, otherwise a(n) = prime(1+A285099(n)).

PROG

(Scheme)

(Scheme) (define (A285323 n) (/ (A065642 (A065642 (A019565 n))) (A019565 n)))

(define (A285323 n) (cond ((zero? n) 1) ((or (= 1 (A000120 n)) (> (A000040 (+ 1 (A285099 n))) (A000290 (A000040 (+ 1 (A007814 n)))))) (A000290 (A000040 (+ 1 (A007814 n))))) (else (A000040 (+ 1 (A285099 n))))))

#6 by Antti Karttunen at Wed Apr 19 15:09:15 EDT 2017
PROG

(PARI)

A019565(n) = {my(j, v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler

A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014

A065642(n) = { my(r=A007947(n)); if(1==n, n, n = n+r; while(A007947(n) <> r, n = n+r); n); };

A285323(n) = A065642(A065642(A019565(n))) / A019565(n);

#5 by Antti Karttunen at Wed Apr 19 15:08:28 EDT 2017
LINKS

Antti Karttunen, <a href="/A285323/b285323.txt">Table of n, a(n) for n = 0..10000</a>

#4 by Antti Karttunen at Wed Apr 19 14:21:05 EDT 2017
CROSSREFS
#3 by Antti Karttunen at Wed Apr 19 14:15:09 EDT 2017
COMMENTS

After the initial zero, a(0)=1, the third row of array A285321 divided by its first row. After 1, all terms are either primes or squares of primes. See A285110.

CROSSREFS
#2 by Antti Karttunen at Wed Apr 19 14:12:17 EDT 2017
NAME

allocated for Antti Karttunen

a(n) = A065642(A065642(A019565(n))) / A019565(n).

DATA

1, 4, 9, 3, 25, 4, 5, 3, 49, 4, 7, 3, 7, 4, 5, 3, 121, 4, 9, 3, 11, 4, 5, 3, 11, 4, 7, 3, 7, 4, 5, 3, 169, 4, 9, 3, 13, 4, 5, 3, 13, 4, 7, 3, 7, 4, 5, 3, 13, 4, 9, 3, 11, 4, 5, 3, 11, 4, 7, 3, 7, 4, 5, 3, 289, 4, 9, 3, 17, 4, 5, 3, 17, 4, 7, 3, 7, 4, 5, 3, 17, 4, 9, 3, 11, 4, 5, 3, 11, 4, 7, 3, 7, 4, 5, 3, 17, 4, 9, 3, 13, 4, 5, 3, 13, 4, 7, 3, 7, 4, 5, 3

OFFSET

0,2

COMMENTS

After the initial zero, the third row of array A285321 divided by its first row.

FORMULA

a(n) = A065642(A065642(A019565(n))) / A019565(n).

PROG

(Scheme) (define (A285323 n) (/ (A065642 (A065642 (A019565 n))) (A019565 n)))

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Antti Karttunen, Apr 19 2017

STATUS

approved

editing

#1 by Antti Karttunen at Mon Apr 17 02:55:08 EDT 2017
NAME

allocated for Antti Karttunen

KEYWORD

allocated

STATUS

approved