D-finite with recurrence: (n+4)*a(n) +(-6*n-19)*a(n-1) +5*(3*n+7)*a(n-2) +10*(-2*n-3)*a(n-3) +(11*n+18)*a(n-4) +(2*n-11)*a(n-5) +3*(-n+1)*a(n-6)=0. - R. J. Mathar, Jun 07 2016
D-finite with recurrence: (n+4)*a(n) +(-6*n-19)*a(n-1) +5*(3*n+7)*a(n-2) +10*(-2*n-3)*a(n-3) +(11*n+18)*a(n-4) +(2*n-11)*a(n-5) +3*(-n+1)*a(n-6)=0. - R. J. Mathar, Jun 07 2016
editing
approved
ConjectureD-finite: (n+4)*a(n) +(-6*n-19)*a(n-1) +5*(3*n+7)*a(n-2) +10*(-2*n-3)*a(n-3) +(11*n+18)*a(n-4) +(2*n-11)*a(n-5) +3*(-n+1)*a(n-6)=0. - R. J. Mathar, Jun 07 2016
approved
editing
proposed
approved
editing
proposed
G. C. Greubel, <a href="/A270784/b270784.txt">Table of n, a(n) for n = 0..1000</a>
approved
editing
editing
approved
Conjecture: (n+4)*a(n) +(-6*n-19)*a(n-1) +5*(3*n+7)*a(n-2) +10*(-2*n-3)*a(n-3) +(11*n+18)*a(n-4) +(2*n-11)*a(n-5) +3*(-n+1)*a(n-6)=0. - R. J. Mathar, Jun 07 2016
approved
editing
editing
approved
G.f.: (1-sqrt(1-4*x^4/(1-x)^4)) / (2*x^4*(1-x)).
a(n) = ((n+4)/4) * Sum_{k=0..(n+4)/4} (binomial(2*k,k)*binomial(n+3,n-4*k)/(k+1)^2).
(Maxima) a(n):=((n+4)/4*sum((binomial(2*k, k)*binomial(n+3, n-4*k))/(k+1)^2, k, 0, (n+4)/4));
a(n):=((n+4)/4*sum((binomial(2*k, k)*binomial(n+3, n-4*k))/(k+1)^2, k, 0, (n+4)/4));
proposed
editing