(MAGMAMagma) [Denominator((n+4)/Gcd(n, 4)^2): n in [0..100]]; // G. C. Greubel, Aug 05 2018
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
(MAGMAMagma) [Denominator((n+4)/Gcd(n, 4)^2): n in [0..100]]; // G. C. Greubel, Aug 05 2018
proposed
approved
editing
proposed
Antti Karttunen, <a href="/A247004/b247004.txt">Table of n, a(n) for n = 0..65537</a>
approved
editing
editing
approved
a(-n) = a(n+16) = a(-n), a(2*n + 1) = 1 for all n in Z. - Michael Somos, Sep 13 2014
proposed
editing
editing
proposed
One can notice that the analog numerators [numerators of (n+4)/GCDgcd(n, 4)^2] are A106617 left-shifted 4 places.
(n+4) / GCDgcd(n, 4)^2 = A188134(n+4) / 4. - Michael Somos, Sep 12 2014
proposed
editing
editing
proposed
(PARI) for(n=0, 100, print1(denominator((n+4)/gcd(n, 4)^2), ", ")) \\ G. C. Greubel, Aug 05 2018
(MAGMA) [Denominator((n+4)/Gcd(n, 4)^2): n in [0..100]]; // G. C. Greubel, Aug 05 2018
approved
editing