(MAGMAMagma) [n^4*(n^2-1)/3: n in [1..40]]; // Vincenzo Librandi, Aug 07 2014
(MAGMAMagma) [n^4*(n^2-1)/3: n in [1..40]]; // Vincenzo Librandi, Aug 07 2014
reviewed
approved
proposed
reviewed
editing
proposed
S. Klavzar, A. Rajapakse, and I. Gutman, <a href="http://dx.doi.org/10.1016/0893-9659(96)00071-7">The Szeged and the Wiener index of graphs</a>, Appl. Math. Lett., Vol. 9, No. 5 (1996, ), pp. 45-49.
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=2} 1/a(n) = 33/4 - Pi^2/2 - Pi^4/30.
Sum_{n>=2} (-1)^n/a(n) = 7*Pi^4/240 + Pi^2/4 - 21/4. (End)
approved
editing
editing
approved
Conjecture: satisfies a linear recurrence having signature (7, -21, 35, -35, 21, -7, 1). - Harvey P. Dale, Mar 25 2021
<a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
approved
editing
editing
approved
Conjecture: satisfies a linear recurrence having signature (7, -21, 35, -35, 21, -7, 1). - Harvey P. Dale, Mar 25 2021
Table[(n^4 (n^2-1))/3, {n, 40}] (* Harvey P. Dale, Mar 25 2021 *)
approved
editing