editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
a(n) ~ 21 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (24200 * Pi^2). - Vaclav Kotesovec, May 29 2018
approved
editing
proposed
approved
editing
proposed
b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[12]]; Table[a[n], {n, 10, 60}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
approved
editing
editing
approved
G.f.: (x^10/(1-x^10)^2-x^11/(1-x^11)^2)/Product_{i>=1}(1-x^i).
Alois P. Heinz, <a href="/A222738/b222738.txt">Table of n, a(n) for n = 10..1000</a>
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=10, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=10..60);
allocated for Alois P. Heinz
Total sum of parts of multiplicity 10 in all partitions of n.
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 14, 16, 23, 28, 40, 49, 67, 82, 110, 135, 180, 220, 286, 349, 448, 548, 694, 846, 1061, 1290, 1608, 1948, 2406, 2909, 3566, 4300, 5242, 6298, 7637, 9149, 11044, 13189, 15847, 18872, 22582, 26817, 31967, 37858, 44970, 53116, 62894
10,5
Column k=10 of A222730.
allocated
nonn
Alois P. Heinz, Mar 03 2013
approved
editing
allocated for Alois P. Heinz
allocated
approved