2, 41, 43, 103, 109, 151, 157, 191, 229, 251, 271, 277, 283, 307, 311, 313, 331, 337, 367, 397, 409, 439, 457, 499, 571, 643, 683, 691, 727, 733, 739, 761, 769, 811, 911, 919, 967, 971, 991, 997, 1013, 1021, 1031, 1051, 1069, 1093, 1151, 1163, 1181, 1289, 1297, 1303, 1321, 1399, 1429, 1459, 1471, 1489, 1543, 1559, 1579, 1597, 1613, 1627, 1657, 1699, 1709, 1723, 1753, 1759, 1783, 1789, 1811, 1871, 1873, 1879, 1933
Same as primes p such that if q is the smallest positive quadratic nonresidue mod p, then either q == 0 mod p or q^k == 1 mod p for some positive integer k < p-1.
A primitive root of a an odd prime p is always a quadratic nonresidue mod p. (Proof. If g == x^2 mod p, then g^((p-1)/2) == x^(p-1) == 1 mod p, and so g is not a primitive root of p.) But a quadratic nonresidue mod p may or may not be a primitive root of p.
The smallest positive quadratic nonresidue of 2 is 2 itself, and 2 is not a primitive root of 2, so 2 is a member.
NR = (Table[p = Prime[n]; First[ Select[ Range[p], JacobiSymbol[#, p] != 1 &]], {n, 1, 300}]); Select[ Prime[ Range[300]], Mod[ NR[[PrimePi[#]]], #] == 0 || MultiplicativeOrder[ NR[[ PrimePi[#]]], #] < # - 1 &]
approved
editing