reviewed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
reviewed
approved
proposed
reviewed
editing
proposed
s(n) := 2*sin(Pi/n) is, for n >= 2, the length ratio side/R of the regular n-gon inscribed in a circle of radius R. This algebraic number s(n), n >= 1, has the degree gamma(n) := A055035(n), and the row length of this table is gamma(n) + 1.
Thanks go to _Seppo Mustonen _, who asked a question about the square of the sum of all length lengths in the regular n-gon , which led to this computation of s(n) and its minimal polynomial.
ps(n,x) = Product_{k=0.. floor(c(2*n)/n) and gcd(k, c(2*n)) = 1} (x - 2*cos(2*Pi*k/c(2*n)), with c(2*n) = A178182(2*n), for n >= 1. There are gamma(n) = A055035(n) zeros. - Wolfdieter Lang, Oct 30 2019
approved
editing
proposed
approved
editing
proposed
The zeros of the row polynomials ps(n,x) are 2*cos(2*Pi*k/c(2*n))) for gcd(k, c(2*n)) = 1, where c(n) = A178182(n), and k from {0, ..., floor(c(2*n)/2)}, for n >= 1. The number of these solutions is gamma(n) = A055035(n). See the fromula formula section. This results from the zeros of the minimal polynomials of sin(2*Pi/n), with coefficients given in A181872/A181873. - Wolfdieter Lang, Oct 30 2019
approved
editing
proposed
approved
editing
proposed
The zeros of the row polynomials ps(n,x) are 2*cos(2*Pi*k/c(2*n))) for gcd(k, c(2*n)) = 1, where c(n) = A178182(n), and k from {0, ..., floor(c(2*n)/2)}, for n >= 1. The number of these solutions is gamma(n) = A055035(n). See the fromula section. This results from the zeros of the minimal polynomials of sin(2*Pi/n), with coeffcients coefficients given in A181872/A181873. - Wolfdieter Lang, Oct 30 2019
approved
editing