reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
lst = {}; x n = 44745755; AppendTo[lst, x]; p = 2^12; m = 3*(p^4 - 1)/(p - 1); Do[x a = (x n + m(-1)/GCD[x + ^c*m, p]; AppendTo[lst, x]; x n = (x - m)a/GCD[x - m, a, p]; AppendTo[lst, Abs@xn], {7c, 0, 14}]; Sort@lst
lst = {}; x = 44745755; AppendTo[lst, x]; p = 2^12; m = 3*(p^4 - 1)/(p - 1); Do[x = (x + m); x = x/GCD[x, + m, p]; AppendTo[lst, x]; x = (x - m; x = x)/GCD[x, - m, p]; AppendTo[lst, Abs@x], {7}]; Sort@lst
allocated for Arkadiusz WesolowskiNumbers n such that n^4 is a Sierpinski number.
44745755, 1812338107, 9266824499, 12308871853, 13657352875, 22767480811, 22930161667, 24068927659, 25549554505, 25770503549, 57939582163, 90219135299, 90329609821, 96949951147, 103126759951
1,1
A sequence constructed from Izotov's trick.
If n belongs to this sequence and n does not end in 5, then n^4 has the covering set {3, 5, 17, 97, 241, 257, 673}.
Anatoly S. Izotov, <a href="http://www.fq.math.ca/Scanned/33-3/izotov.pdf">A note on Sierpinski numbers</a>
Wikipedia, <a href="http://en.wikipedia.org/wiki/Sierpinski_number">Sierpinski number</a>
lst = {}; x = 44745755; AppendTo[lst, x]; p = 2^12; m = 3*(p^4 - 1)/(p - 1); Do[x = (x + m); x = x/GCD[x, p]; AppendTo[lst, x]; x = x - m; x = x/GCD[x, p]; AppendTo[lst, Abs@x], {7}]; Sort@lst
Cf. A076336.
allocated
hard,nonn
Arkadiusz Wesolowski, Jun 09 2012
approved
editing
allocated for Arkadiusz Wesolowski
allocated
approved