With[{m = 6}, Prime@ Select[Range[m + 1, 5*10^4], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)
reviewed
editing
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
With[{m = 6}, Prime@ Select[Range[m + 1, 5*10^4], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)
reviewed
editing
proposed
reviewed
editing
proposed
Primes p=prime(i) of level (1,6), i.e. , such that A118534(i) = prime(i-6).
For n=3, a(n) = 31277 =Prime prime(3373);
2*Primeprime(3373) -Prime prime(3374) =Prime prime(3367);
2*31277 - 31307 = 31247.
approved
editing
proposed
approved
editing
proposed
allocated for Fabien SibenalerPrimes p=prime(i) of level (1,6), i.e. such that A118534(i)=prime(i-6).
15823, 21617, 31277, 43331, 65731, 97883, 100853, 120947, 265277, 318023, 320953, 361241, 362759, 419831, 422141, 426799, 452549, 465211, 482441, 491539, 504403, 513533, 526781, 540391, 551597, 557093, 575261
1,1
For n=3, a(n)=31277=Prime(3373)
2*Prime(3373)-Prime(3374)=Prime(3367)
2*31277-31307=31247
allocated
nonn
Fabien Sibenaler, Mar 10 2013
approved
editing
allocated for Fabien Sibenaler
recycled
allocated