[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A202066 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Mass of oriented maximal Wicks forms of genus n, multiplied by 6.
(history; published version)
#10 by Alois P. Heinz at Wed Sep 05 07:57:50 EDT 2018
STATUS

proposed

approved

#9 by Altug Alkan at Wed Sep 05 07:49:14 EDT 2018
STATUS

editing

proposed

#8 by Altug Alkan at Wed Sep 05 07:49:10 EDT 2018
CROSSREFS
STATUS

proposed

editing

#7 by Jean-François Alcover at Wed Sep 05 07:47:51 EDT 2018
STATUS

editing

proposed

#6 by Jean-François Alcover at Wed Sep 05 07:47:47 EDT 2018
MATHEMATICA

m1[g_] := 2 (1/12)^g (6g-5)! / (g! (3g-3)!);

s1 = Table[m1[g], {g, 1, 50}]

s1a = Table[Numerator[m1[g]], {g, 1, 50}]; (* A202067 *)

s1b = Table[Denominator[m1[g]], {g, 1, 50}]; (* A202068 *)

s2 = Table[6 m1[g], {g, 1, 20}]; (* A202066 *) (* Jean-François Alcover, Sep 05 2018, from Maple *)

STATUS

approved

editing

#5 by Russ Cox at Fri Mar 30 16:52:08 EDT 2012
AUTHOR

_N. J. A. Sloane (njas(AT)research.att.com), _, Dec 10 2011

Discussion
Fri Mar 30
16:52
OEIS Server: https://oeis.org/edit/global/110
#4 by N. J. A. Sloane at Sat Dec 10 18:36:46 EST 2011
STATUS

editing

approved

#3 by N. J. A. Sloane at Sat Dec 10 18:36:40 EST 2011
NAME

allocated for N. J. A. Sloane

Mass of oriented maximal Wicks forms of genus n, multiplied by 6.

DATA

1, 35, 10010, 8083075, 13013750750, 35098085772750, 142849209095092500, 818490255812606251875, 6283276863788107326893750, 62273556997003931716843956250, 774241472911295609950819376787500, 11801375650850423334675364350683468750, 216435413840342786969740847520096250187500, 4702059365681447046917619912374091035323437500

OFFSET

1,2

LINKS

R. Bacher and A. Vdovina, <a href="http://arXiv.org/abs/math.CO/0110025">Counting 1-vertex triangulations of oriented surfaces</a>, Discrete Math. 246 (2002), 13-27.

EXAMPLE

1/6, 35/6, 5005/3, 8083075/6, 6506875375/3, 5849680962125, 23808201515848750, 272830085270868750625/2, 3141638431894053663446875/3, 31136778498501965858421978125/3, ...

MAPLE

m1:=g->2*(1/12)^g*(6*g-5)!/(g!*(3*g-3)!);

s1:=[seq(m1(g), g=1..50)]:

s1a:=[seq(numer(m1(g)), g=1..50)]; #A202067

s1b:=[seq(denom(m1(g)), g=1..50)]; #A202068

s2:=[seq(6*m1(g), g=1..20)]: #A202066

KEYWORD

allocated

nonn

AUTHOR

N. J. A. Sloane (njas(AT)research.att.com), Dec 10 2011

STATUS

approved

editing

#2 by N. J. A. Sloane at Sat Dec 10 18:33:03 EST 2011
KEYWORD

allocating

allocated

#1 by N. J. A. Sloane at Sat Dec 10 18:33:03 EST 2011
NAME

allocated for N. J. A. Sloane

KEYWORD

allocating

STATUS

approved