proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
R. H. Hardin , Feb 23 2012
proposed
editing
editing
proposed
Number of 4Xn 4 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 0 vertically.
Row 4 of A208078.
Empirical: a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3).
Conjectures from Colin Barker, Jan 20 2018: (Start)
G.f.: 9*x*(1 + 4*x - x^2) / ((1 + x)*(1 - 6*x + x^2)).
a(n) = (9/4)*(2*(-1)^n + (3-2*sqrt(2))^n + (3+2*sqrt(2))^n).
(End)
Some solutions for n=4:
approved
editing
_R. H. Hardin (rhhardin(AT)att.net) _ Feb 23 2012
editing
approved
R. H. Hardin, <a href="/A208079/b208079.txt">Table of n, a(n) for n = 1..210</a>
allocated for Ron HardinNumber of 4Xn 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 0 vertically
9, 81, 441, 2601, 15129, 88209, 514089, 2996361, 17464041, 101787921, 593263449, 3457792809, 20153493369, 117463167441, 684625511241, 3990289900041, 23257113888969, 135552393433809, 790057246713849, 4604791086849321
1,1
Row 4 of A208078
Empirical: a(n) = 5*a(n-1) +5*a(n-2) -a(n-3)
Some solutions for n=4
..1..0..1..0....1..1..0..1....1..1..1..1....0..1..1..0....1..1..1..0
..1..0..1..1....1..0..1..0....0..1..1..0....1..1..0..0....0..1..1..1
..0..1..0..1....1..0..1..1....0..1..1..1....1..0..1..1....1..1..0..1
..1..1..1..0....1..1..0..1....1..1..0..1....0..1..1..1....1..0..1..0
allocated
nonn
R. H. Hardin (rhhardin(AT)att.net) Feb 23 2012
approved
editing
allocated for Ron Hardin
allocated
approved