(MAGMAMagma) [Floor(n*Sqrt(5)+Sqrt(3)): n in [0..60] ];
(MAGMAMagma) [Floor(n*Sqrt(5)+Sqrt(3)): n in [0..60] ];
editing
approved
<a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
approved
editing
editing
approved
sqrt(5)+sqrt(3) = 3.96811878506867... is the largest root of x^4 - 16*x^2 + 4.
(PARI) a(n)=sqrtint(sqrtint(60*n^4)+8*n^2) \\ Charles R Greathouse IV, Jan 24 2022
approved
editing
editing
approved
Floora(n) = floor(n*(sqrt(5)+sqrt(3))).
approved
editing
editing
approved
asqrt(5)+sqrt(n3) = integer part of n*3.968118785096811878506867..., where the constant is the largest root of x^4 -16*x^2 +4.
With[{c = Sqrt[5] + Sqrt[3]}, Floor[c Range[0, 60]]] (* Harvey P. Dale, Apr 10 2012 *)
proposed
editing
editing
proposed