proposed
approved
proposed
approved
editing
proposed
Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, <a href="https://arxivdoi.org/abs/230310.022401007/s44007-024-00134-w">A unified treatment of families of partition functions</a>, La Matematica (2024). Preprint available as <a href="https://arxiv.org/abs/2303.02240">arXiv </a> [math.CO], 2023.
approved
editing
From _Ricardo Gomez_, Gómez Aíza_, Mar 08 2023: (Start)
proposed
approved
editing
proposed
L. Lida Ahmadi, R. Ricardo Gómez Aíza, and M. D. Mark Daniel Ward. , <a href="https://arxiv.org/abs/2303.02240">A unified treatment of families of partition functions</a>, arXiv:2303.02240 [math.CO], 2023.
log(a(n) / n!) ~ (3 / 2) * (Zeta(3) * Pi ^ 4 / 18) ^(1 / 3) * n ^(2 / 3). (End)
E.g.f.: Prod_Product_{n>=1,m>=1,k>=1} 1 / (1 - x^(n * m * k))^n.
From Ricardo Gomez, Mar 08 2023: (Start)
GE.g.f.: Sum_{n >= 0} (a(n) / n!) x ^n = Prod_{n>=1,m>=1,k>=1} 1 / (1 - x^{(n * m * k}) )^ n.
log(a(n) / n!) ~ (3 / 2) * (Zeta(3) * Pi ^ 4 / 18) ^(1 / 3) * n ^(2 / 3). _Ricardo Gomez_, Mar 08 2023(End)