[go: up one dir, main page]

login
Revision History for A163526 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

newer changes | Showing entries 11-18
Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
(history; published version)
#8 by G. C. Greubel at Thu Jul 27 23:27:08 EDT 2017
STATUS

editing

proposed

#7 by G. C. Greubel at Thu Jul 27 23:27:00 EDT 2017
LINKS

G. C. Greubel, <a href="/A163526/b163526.txt">Table of n, a(n) for n = 0..710</a>

FORMULA

G.f. (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1).

- 24*t + 1)

MATHEMATICA

CoefficientList[Series[(t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jul 27 2017 *)

PROG

(PARI) t='t+O('t^50); Vec((t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1)) \\ G. C. Greubel, Jul 27 2017

STATUS

approved

editing

#6 by Ray Chandler at Wed Nov 23 15:57:52 EST 2016
STATUS

editing

approved

#5 by Ray Chandler at Wed Nov 23 15:57:48 EST 2016
LINKS

<a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (24, 24, 24, 24, -300).

STATUS

approved

editing

#4 by N. J. A. Sloane at Sun Jul 13 09:05:30 EDT 2014
AUTHOR

_John Cannon (john(AT)maths.usyd.edu.au) _ and N. J. A. Sloane, Dec 03 2009

Discussion
Sun Jul 13
09:05
OEIS Server: https://oeis.org/edit/global/2246
#3 by Russ Cox at Fri Mar 30 16:51:27 EDT 2012
AUTHOR

John Cannon (john(AT)maths.usyd.edu.au) and _N. J. A. Sloane (njas(AT)research.att.com), _, Dec 03 2009

Discussion
Fri Mar 30
16:51
OEIS Server: https://oeis.org/edit/global/110
#2 by N. J. A. Sloane at Sun Jul 11 03:00:00 EDT 2010
FORMULA

G,.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^5 - 24*t^4 - 24*t^3 - 24*t^2

KEYWORD

nonn,new

nonn

#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

DATA

1, 26, 650, 16250, 406250, 10155925, 253890000, 6347047200, 158671110000, 3966651000000, 99163106355300, 2478998445300000, 61972980856207200, 1549275016079700000, 38730637808401500000, 968235006358878382800

OFFSET

0,2

COMMENTS

The initial terms coincide with those of A170745, although the two sequences are eventually different.

Computed with MAGMA using commands similar to those used to compute A154638.

FORMULA

G,f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^5 - 24*t^4 - 24*t^3 - 24*t^2

- 24*t + 1)

KEYWORD

nonn

AUTHOR

John Cannon (john(AT)maths.usyd.edu.au) and N. J. A. Sloane (njas(AT)research.att.com), Dec 03 2009

STATUS

approved