editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
coxG[{9, 820, -40}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 05 2017 *)
approved
editing
editing
approved
<a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (40, 40, 40, 40, 40, 40, 40, 40, -820).
approved
editing
_John Cannon (john(AT)maths.usyd.edu.au) _ and N. J. A. Sloane, Dec 03 2009
John Cannon (john(AT)maths.usyd.edu.au) and _N. J. A. Sloane (njas(AT)research.att.com), _, Dec 03 2009
G,.f.: (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
nonn,new
nonn
Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.
1, 42, 1722, 70602, 2894682, 118681962, 4865960442, 199504378122, 8179679503002, 335366859622221, 13750041244475760, 563751691022059680, 23113819331845141200, 947666592603219256320, 38854330296632296661040
0,2
G,f.: (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(820*t^9 - 40*t^8 - 40*t^7 - 40*t^6 - 40*t^5 - 40*t^4 - 40*t^3 -
40*t^2 - 40*t + 1)
nonn
John Cannon (john(AT)maths.usyd.edu.au) and N. J. A. Sloane (njas(AT)research.att.com), Dec 03 2009
approved