editing
approved
editing
approved
Triangle read by rows: T(n,k) is the Wiener index of a k x X n grid, (i.e. , P_k x X P_n, where P_m is the path graph on m vertices; 1 <= k <= n).
T(n,k) = k*n*(n+k)*(k*n-1)/6 (k, n >= 1).
T(3,2)=25 because on the P(2)xP X P(3) graph there are 7 distances equal to 1, 6 distances equal to 2 and 2 distances equal to 3, with 7*1 + 6*2 + 2*3 = 25.
approved
editing
proposed
approved
editing
proposed
editing
proposed
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph</a>, Internat. J. of Quantum Chem., 60 (1996), 959-969, doi:10.1002/(SICI)1097-461X(1996)60:5<959::AID-QUA2>3.0.CO;2-W
B. E. Sagan, Y-N. Yeh and P. Zhang, <a href="http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:5<959::AID-QUA2>3.0.CO;2-W">The Wiener Polynomial of a Graph</a>, Internat. J. of Quantum Chem., 60, 1996, 959-969.
T(n,k) =kn k*n*(n+k)*(knk*n-1)/6 (k,n>=1).
proposed
editing
editing
proposed
Michael De Vlieger, <a href="/A143368/b143368.txt">Table of n, a(n) for n = 1..11325</a> (rows 1 <= n <= 150).
Table[k n (n + k) (k n - 1)/6, {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, May 28 2017 *)
reviewed
editing