proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
A doubling of A062344 that gives a skew triangle of coefficients: t(n,m)=(Binomial[2*n, m]*Binomial[2*(n - m), (n - m)]).
Triangle T(n,k) = binomial(2*n,k) *binomial(2*n-2*k,n-k), read by rows; 0<=k<=n.
1,0,2
Row sums are: s(n) = 1, 4, 20, 106, 580, 3244,,...
{2, 14, 86, 510, 2992, 17522, 102818, 605470, 3579980, 21254064}.
tConjecture for row sums: 2*(n+1)*(2*n+1)*s(n) +(-81*n^2+19*n-8)*s(n,m-1)= +10*(Binomial[51*n^2-77*n, m]+30)*Binomial[s(n-2) -500*(n - m1), *(2*n - m3)]*s(n-3)=0. - _R. J. Mathar_, Sep 13 2013
{1},
1;
{2, 2},;
{6, 8, 6},;
{20, 36, 30, 20},;
{70, 160, 168, 112, 70},;
{252, 700, 900, 720, 420, 252},;
{924, 3024, 4620, 4400, 2970, 1584, 924},;
{3432, 12936, 22932, 25480, 20020, 12012, 6006, 3432},;
{12870, 54912, 110880, 141120, 127400, 87360, 48048, 22880, 12870},;
{48620, 231660, 525096, 753984, 771120, 599760, 371280, 190944, 87516, 48620},';
{184756, 972400, 2445300, 3912480, 4476780, 3907008, 2713200, 1550400, 755820, 335920, 184756};
nonn,unedtabl
approved
editing
_Roger L. Bagula _ and _Gary W. Adamson (rlbagulatftn(AT)yahoo.com), _, Sep 17 2008
A doubling of A062344 that gives a skew triangle of coefficients: t(n,m)=(Binomial[2*n, m]*Binomial[2*(n - m), (n - m)]).
1, 2, 2, 6, 8, 6, 20, 36, 30, 20, 70, 160, 168, 112, 70, 252, 700, 900, 720, 420, 252, 924, 3024, 4620, 4400, 2970, 1584, 924, 3432, 12936, 22932, 25480, 20020, 12012, 6006, 3432, 12870, 54912, 110880, 141120, 127400, 87360, 48048, 22880, 12870, 48620
1,2
Row sums are:
{2, 14, 86, 510, 2992, 17522, 102818, 605470, 3579980, 21254064}.
t(n,m)=(Binomial[2*n, m]*Binomial[2*(n - m), (n - m)]).
{1},
{2, 2},
{6, 8, 6},
{20, 36, 30, 20},
{70, 160, 168, 112, 70},
{252, 700, 900, 720, 420, 252},
{924, 3024, 4620, 4400, 2970, 1584, 924},
{3432, 12936, 22932, 25480, 20020, 12012, 6006, 3432},
{12870, 54912, 110880, 141120, 127400, 87360, 48048, 22880, 12870},
{48620, 231660, 525096, 753984, 771120, 599760, 371280, 190944, 87516, 48620},
{184756, 972400, 2445300, 3912480, 4476780, 3907008, 2713200, 1550400, 755820, 335920, 184756}
t[n_, m_] = (Binomial[2*n, m]*Binomial[2*(n - m), (n - m)]); Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
Cf. A062344.
nonn,uned
Roger L. Bagula and Gary W. Adamson (rlbagulatftn(AT)yahoo.com), Sep 17 2008
approved