[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A142243 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle T(n,k) = binomial(2*n,k) *binomial(2*n-2*k,n-k), read by rows; 0<=k<=n.
(history; published version)
#5 by Charles R Greathouse IV at Fri Sep 13 17:16:43 EDT 2013
STATUS

proposed

approved

#4 by R. J. Mathar at Fri Sep 13 16:34:58 EDT 2013
STATUS

editing

proposed

#3 by R. J. Mathar at Fri Sep 13 16:34:50 EDT 2013
NAME

A doubling of A062344 that gives a skew triangle of coefficients: t(n,m)=(Binomial[2*n, m]*Binomial[2*(n - m), (n - m)]).

Triangle T(n,k) = binomial(2*n,k) *binomial(2*n-2*k,n-k), read by rows; 0<=k<=n.

OFFSET

1,0,2

COMMENTS

Row sums are: s(n) = 1, 4, 20, 106, 580, 3244,,...

{2, 14, 86, 510, 2992, 17522, 102818, 605470, 3579980, 21254064}.

FORMULA

tConjecture for row sums: 2*(n+1)*(2*n+1)*s(n) +(-81*n^2+19*n-8)*s(n,m-1)= +10*(Binomial[51*n^2-77*n, m]+30)*Binomial[s(n-2) -500*(n - m1), *(2*n - m3)]*s(n-3)=0. - _R. J. Mathar_, Sep 13 2013

EXAMPLE

{1},

1;

{2, 2},;

{6, 8, 6},;

{20, 36, 30, 20},;

{70, 160, 168, 112, 70},;

{252, 700, 900, 720, 420, 252},;

{924, 3024, 4620, 4400, 2970, 1584, 924},;

{3432, 12936, 22932, 25480, 20020, 12012, 6006, 3432},;

{12870, 54912, 110880, 141120, 127400, 87360, 48048, 22880, 12870},;

{48620, 231660, 525096, 753984, 771120, 599760, 371280, 190944, 87516, 48620},';

{184756, 972400, 2445300, 3912480, 4476780, 3907008, 2713200, 1550400, 755820, 335920, 184756};

KEYWORD

nonn,unedtabl

STATUS

approved

editing

#2 by Charles R Greathouse IV at Fri Oct 12 14:54:52 EDT 2012
AUTHOR

_Roger L. Bagula _ and _Gary W. Adamson (rlbagulatftn(AT)yahoo.com), _, Sep 17 2008

Discussion
Fri Oct 12
14:54
OEIS Server: https://oeis.org/edit/global/1840
#1 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
NAME

A doubling of A062344 that gives a skew triangle of coefficients: t(n,m)=(Binomial[2*n, m]*Binomial[2*(n - m), (n - m)]).

DATA

1, 2, 2, 6, 8, 6, 20, 36, 30, 20, 70, 160, 168, 112, 70, 252, 700, 900, 720, 420, 252, 924, 3024, 4620, 4400, 2970, 1584, 924, 3432, 12936, 22932, 25480, 20020, 12012, 6006, 3432, 12870, 54912, 110880, 141120, 127400, 87360, 48048, 22880, 12870, 48620

OFFSET

1,2

COMMENTS

Row sums are:

{2, 14, 86, 510, 2992, 17522, 102818, 605470, 3579980, 21254064}.

FORMULA

t(n,m)=(Binomial[2*n, m]*Binomial[2*(n - m), (n - m)]).

EXAMPLE

{1},

{2, 2},

{6, 8, 6},

{20, 36, 30, 20},

{70, 160, 168, 112, 70},

{252, 700, 900, 720, 420, 252},

{924, 3024, 4620, 4400, 2970, 1584, 924},

{3432, 12936, 22932, 25480, 20020, 12012, 6006, 3432},

{12870, 54912, 110880, 141120, 127400, 87360, 48048, 22880, 12870},

{48620, 231660, 525096, 753984, 771120, 599760, 371280, 190944, 87516, 48620},

{184756, 972400, 2445300, 3912480, 4476780, 3907008, 2713200, 1550400, 755820, 335920, 184756}

MATHEMATICA

t[n_, m_] = (Binomial[2*n, m]*Binomial[2*(n - m), (n - m)]); Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]

CROSSREFS

Cf. A062344.

KEYWORD

nonn,uned

AUTHOR

Roger L. Bagula and Gary W. Adamson (rlbagulatftn(AT)yahoo.com), Sep 17 2008

STATUS

approved