_Manuel Kauers (manuel(AT)kauers.de), _, Nov 18 2008
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
_Manuel Kauers (manuel(AT)kauers.de), _, Nov 18 2008
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, -1, 1), (0, 0, 1), (0, 1, 0), (1, 1, -1)}
1, 2, 5, 15, 50, 176, 646, 2452, 9549, 37961, 153511, 629732, 2614885, 10972374, 46463260, 198334111, 852639288, 3688754625, 16049389276, 70187680379, 308375520541, 1360617913209, 6026613738270, 26788857783196, 119469665596501, 534412213485831, 2397257900073820, 10781700156879226
0,2
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
nonn,walk
Manuel Kauers (manuel(AT)kauers.de), Nov 18 2008
approved