[go: up one dir, main page]

login
Revision History for A145088 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Row 3 of square table A145085.
(history; published version)
#3 by Russ Cox at Fri Mar 30 18:37:15 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Oct 01 2008

Discussion
Fri Mar 30
18:37
OEIS Server: https://oeis.org/edit/global/213
#2 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
FORMULA

E.g.f.: A(x) = R(3,x)^(1/3) = exp( Integral R(4,x) dx ) where R(3,x) = e.g.f. of A145083, and R(4,x) = e.g.f. of A145084.

KEYWORD

nonn,new

nonn

#1 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
NAME

Row 3 of square table A145085.

DATA

1, 1, 5, 49, 741, 15457, 416661, 13908049, 557865765, 26296627233, 1431946482453, 88859040485585, 6214831383604709, 485449303578082273, 42025472165413172501, 4005872618389765500113, 418072369437989483917349

OFFSET

0,3

COMMENTS

Let S(n,x) be the e.g.f. of row n of square table A145085, then the e.g.f.s satisfy: S(n,x) = exp( Integral S(n+1,x)^(n+1) dx ) for n>=0.

FORMULA

E.g.f.: A(x) = S(3,x) = exp( Integral S(4,x)^4 dx ) where S(n,x) is the e.g.f. of row n of square table A145085.

E.g.f.: A(x) = R(3,x)^(1/3) = exp( Integral R(4,x) dx ) where R(3,x) = e.g.f. of A145083, and R(4,x) = e.g.f. of A145084.

PROG

(PARI) {a(n)=local(A=vector(n+4, j, 1+j*x)); for(i=0, n+3, for(j=0, n, m=n+3-j; A[m]=exp(m*intformal(A[m+1]+x*O(x^n))))); n!*polcoeff(A[3]^(1/3), n, x)}

(PARI) {a(n)=local(A=vector(n+4, j, 1+j*x)); for(i=0, n+3, for(j=0, n, m=n+3-j; A[m]=exp(intformal(A[m+1]^(m+1)+x*O(x^n))))); n!*polcoeff(A[3], n, x)}

KEYWORD

nonn

AUTHOR

Paul D. Hanna (pauldhanna(AT)juno.com), Oct 01 2008

STATUS

approved