[go: up one dir, main page]

login
Revision History for A144706 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Central coefficients of the triangle A132047.
(history; published version)
#21 by Charles R Greathouse IV at Mon Oct 23 11:18:06 EDT 2023
STATUS

editing

approved

#20 by Charles R Greathouse IV at Mon Oct 23 11:18:04 EDT 2023
PROG

(PARI) a(n) = if(n, 3*binomial(2*n, n), 1) \\ Charles R Greathouse IV, Oct 23 2023

STATUS

approved

editing

#19 by Joerg Arndt at Thu Jun 16 04:08:55 EDT 2022
STATUS

proposed

approved

#18 by Joerg Arndt at Thu Jun 16 04:08:51 EDT 2022
STATUS

editing

proposed

#17 by Joerg Arndt at Thu Jun 16 04:08:28 EDT 2022
NAME

Central coefficients of Pascal-like the triangle A132047.

STATUS

reviewed

editing

#16 by Michel Marcus at Thu Jun 16 03:29:30 EDT 2022
STATUS

proposed

reviewed

#15 by G. C. Greubel at Thu Jun 16 03:04:00 EDT 2022
STATUS

editing

proposed

#14 by G. C. Greubel at Thu Jun 16 03:03:49 EDT 2022
LINKS

G. C. Greubel, <a href="/A144706/b144706.txt">Table of n, a(n) for n = 0..1000</a>

FORMULA

G.f.: 3/sqrt(1-4x4*x) - 2;

a(n) = 3*binomial(2n,2*n, n) - 2*0^n.

From Philippe Deléham, Oct 30 2008: (Start)

a(n) = Sum_{k=0..n} A039599(n,k)*A010686(k) = Sum_{k=0..n} A106566(n,k)*A082505(k+1). - _Philippe Deléham_, Oct 30 2008

a(n) = Sum_{k=0..n} A106566(n,k)*A082505(k+1). (End)

D-finite with recurrence: n*a(n) + = 2*(-2*n+-1)*a(n-1) = 0. - R. J. Mathar, Nov 30 2012

E.g.f.: -2 + 3*exp(2*x)*BesselI(0, 2*x). - G. C. Greubel, Jun 16 2022

MATHEMATICA

Table[3*Binomial[2n, n] -2*Boole[n==0], {n, 0, 40}] (* G. C. Greubel, Jun 16 2022 *)

PROG

(Magma) [n eq 0 select 1 else 3*(n+1)*Catalan(n): n in [0..40]]; // G. C. Greubel, Jun 16 2022

(SageMath) [3*binomial(2*n, n) -2*bool(n==0) for n in (0..40)] # G. C. Greubel, Jun 16 2022

STATUS

approved

editing

#13 by N. J. A. Sloane at Thu Jan 30 21:29:16 EST 2020
FORMULA

D-finite with recurrence: n*a(n) + 2*(-2*n+1)*a(n-1) = 0. - R. J. Mathar, Nov 30 2012

Discussion
Thu Jan 30
21:29
OEIS Server: https://oeis.org/edit/global/2847
#12 by Alois P. Heinz at Sun Jan 26 21:06:10 EST 2020
STATUS

proposed

approved