reviewed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
reviewed
approved
proposed
reviewed
editing
proposed
Thus, the conjectured value for a(24) is 24! * (2^{(0-4) * 3^(0-1) * 5^(1-0) * 7^(0-1) * 11^(0-1) * 13^(0-1) * 17^(0-1) * 19^(0-1) * 23^(0-1)) since no exponent of a prime is > 2. This product equals 8691005030400000 = a(24). (End)
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
Let us To illustrate the Krattenhaler-Rivoal conjecture for consider the case n = 24. We have Then H_24 = Sum_{k=1..24} 1/k = 1347822955/356948592 and {p <= 24} = {2, 3, 5, 7, 11, 13, 17, 19, 23} with {v_p(numerator): p <= 24} = {0, 0, 1, 0, 0, 0, 0, 0, 0} and {v_p(denominator): p <= 24} = {4, 1, 0, 1, 1, 1, 1, 1, 1}.
According to Krattenhaler and Rivoal (2007-2009), their conjecture is that a(n) = n!*Xi(n), where Xi(1) = 1, Xi(7) = 1/140, and Xi(n) = Product_{p <= n} p^min(2, v_p(H_n)) for n <> 1, 7, where v_p(r) is the p-adic valuation of rational r. (Here p indicates a prime and H_n is the n-th harmonic number.) - Petros Hadjicostas, May 24 2020
proposed
editing
editing
proposed