proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
a(n) = A006519(A001623(n)). - Michel Marcus, Oct 02 2017
(PARI) a001623(n) = n*(n-3)!*sum(i=0, n, sum(j=0, n-i, (-1)^j*binomial(3*i+j+2, j)<<(n-i-j)/(n-i-j)!)*i!);
a(n) = 2^valuation(a001623(n), 2); \\ Michel Marcus, Oct 02 2017
John Riordan, A recurrence relation for three-line Latin rectangles, Amer. Math. Monthly, 59 (1952), pp. 159-162.
D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
John Riordan, <a href="http://www.jstor.org/stable/2308187">A recurrence relation for three-line Latin rectangles</a>, Amer. Math. Monthly, 59 (1952), pp. 159-162.
D. S. Stones, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v17i1a1/0">The many formulas for the number of Latin rectangles</a>, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, <a href="http://dx.doi.org/10.1016/j.jcta.2009.03.019">Divisors of the number of Latin rectangles</a>, J. Combin. Theory Ser. A 117 (2010), 204-215.
approved
editing
D. S. Stones, The many formulae formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones, The many formulae for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
nonn,new
nonn
Largest 2^x dividing A001623(n), the number of reduced three-line Latin rectangles.
1, 4, 2, 8, 16, 64, 32, 64, 128, 512, 256, 2048, 8192, 16384, 4096, 65536, 32768, 131072, 65536, 262144, 524288, 2097152, 1048576, 2097152, 4194304, 16777216, 8388608, 134217728, 134217728, 1073741824, 134217728, 536870912, 2147483648
3,2
John Riordan, A recurrence relation for three-line Latin rectangles, Amer. Math. Monthly, 59 (1952), pp. 159-162.
nonn,new
Douglas Stones (dssto1(AT)student.monash.edu.au), May 06 2007
approved