[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A122956 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Least semiprime composed of a square and a positive cube in n different ways.
(history; published version)
#6 by Russ Cox at Fri Mar 30 18:40:38 EDT 2012
AUTHOR

_Jonathan Vos Post (jvospost3(AT)gmail.com) _ & Robert G. Wilson v, Sep 29 2006

Discussion
Fri Mar 30
18:40
OEIS Server: https://oeis.org/edit/global/228
#5 by Russ Cox at Fri Mar 30 17:34:57 EDT 2012
EXAMPLE

a(7) = 1632201497 = 38425^2 + 538^3 = 38202^2 + 557^3 = 36741^2 + 656^3 = 26177^2 + 982^3 = 18555^2 + 1088^3 = 13477^2 + 1132^3 = 1292^2 + 1177^3. [From _Donovan Johnson (donovan.johnson(AT)yahoo.com), _, Aug 31 2008]

Contribution from _Donovan Johnson (donovan.johnson(AT)yahoo.com), _, Mar 01 2010: (Start)

EXTENSIONS

a(7) from _Donovan Johnson (donovan.johnson(AT)yahoo.com), _, Aug 31 2008

a(8)-a(12) from _Donovan Johnson (donovan.johnson(AT)yahoo.com), _, Mar 01 2010

Discussion
Fri Mar 30
17:34
OEIS Server: https://oeis.org/edit/global/163
#4 by Russ Cox at Fri Mar 30 17:31:21 EDT 2012
AUTHOR

Jonathan Vos Post (jvospost3(AT)gmail.com) & _Robert G. Wilson v (rgwv(AT)rgwv.com), _, Sep 29 2006

Discussion
Fri Mar 30
17:31
OEIS Server: https://oeis.org/edit/global/156
#3 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
DATA

4, 9, 65, 11665, 27289, 3030569, 6808609, 1632201497, 10553247449, 843404126561, 2101614761177, 62537392166201, 100301302204489

EXAMPLE

Contribution from Donovan Johnson (donovan.johnson(AT)yahoo.com), Mar 01 2010: (Start)

a(8) = 10553247449 = 102729^2 + 2^3 = 102393^2 + 410^3 = 101551^2 + 622^3 = 101371^2 + 652^3 = 80357^2 + 1600^3 = 63768^2 + 1865^3 = 13893^2 + 2180^3 = 4581^2 + 2192^3.

a(9) = 843404126561 = 917123^2 + 1318^3 = 902037^2 + 3098^3 = 866353^2 + 4528^3 = 833585^2 + 5296^3 = 634581^2 + 7610^3 = 521169^2 + 8300^3 = 478831^2 + 8500^3 = 259331^2 + 9190^3 = 23805^2 + 9446^3.

a(10) = 2101614761177 = 1449189^2 + 1136^3 = 1448961^2 + 1286^3 = 1448167^2 + 1642^3 = 1421577^2 + 4322^3 = 1315794^2 + 7181^3 = 1271813^2 + 7852^3 = 1119559^2 + 9466^3 = 1085568^2 + 9737^3 = 668475^2 + 11828^3 = 438431^2 + 12406^3.

a(11) = 62537392166201 = 7908053^2 + 448^3 = 7906101^2 + 3140^3 = 7863087^2 + 8918^3 = 7778399^2 + 12670^3 = 7537351^2 + 17890^3 = 7205845^2 + 21976^3 = 6649899^2 + 26360^3 = 5818649^2 + 30610^3 = 5684351^2 + 31150^3 = 2900985^2 + 37826^3 = 1009845^2 + 39476^3.

a(12) = 100301302204489 = 10013433^2 + 3190^3 = 9966435^2 + 9904^3 = 9922058^2 + 12285^3 = 9879183^2 + 13930^3 = 9821564^2 + 15657^3 = 9740881^2 + 17562^3 = 7540415^2 + 35154^3 = 2704995^2 + 45304^3 = 2667144^2 + 45337^3 = 1300067^2 + 46200^3 = 614915^2 + 46404^3 = 54519^2 + 46462^3.

(End)

KEYWORD

more,nonn,new

EXTENSIONS

a(8)-a(12) from Donovan Johnson (donovan.johnson(AT)yahoo.com), Mar 01 2010

#2 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
DATA

4, 9, 65, 11665, 27289, 3030569, 6808609, 1632201497

EXAMPLE

a(7) = 1632201497 = 38425^2 + 538^3 = 38202^2 + 557^3 = 36741^2 + 656^3 = 26177^2 + 982^3 = 18555^2 + 1088^3 = 13477^2 + 1132^3 = 1292^2 + 1177^3. [From Donovan Johnson (donovan.johnson(AT)yahoo.com), Aug 31 2008]

KEYWORD

more,nonn,new

AUTHOR

Jonathan Vos Post (jvospost2jvospost3(AT)yahoogmail.com) & Robert G. Wilson v (rgwv(AT)rgwv.com), Sep 29 2006

EXTENSIONS

a(7) from Donovan Johnson (donovan.johnson(AT)yahoo.com), Aug 31 2008

#1 by N. J. A. Sloane at Wed Dec 06 03:00:00 EST 2006
NAME

Least semiprime composed of a square and a positive cube in n different ways.

DATA

4, 9, 65, 11665, 27289, 3030569, 6808609

OFFSET

0,1

COMMENTS

a(n) for n>0 must be odd.

EXAMPLE

a(0)=4 since it is the first semiprime (2*2) not of the form a^2+b^3.

a(1) = 9 = 1^2 + 2^3 = 3*3.

a(2) = 65 = 1^2 + 4^3 = 8^2 + 1^3 = 5*13.

a(3) = 11665 = 108^2 + 1^3 = 107^2 + 6^3 = 87^2 + 16^3 = 5*2333.

a(4) = 27289 = 165^2 + 4^3 = 129^2 + 22^3 = 108^2 + 25^2 = 17^2 + 30^3 = 29*941.

a(5) = 3030569 = 1671^2 + 62^3 = 1587^2 + 80^3 = 1038^2 + 125^3 = 913^2 + 130^3 = 409^2 + 142^3 = 103*29423.

a(6) = 6808609 = 2609^2 + 12^3 = 2445^2 + 94^3 = 1853^2 + 150^3 = 1647^2 + 160^3 = 1522^2 + 165^3 = 1124^2 + 177^3 = 103*66103.

MATHEMATICA

semiPrimeQ[x_] := Plus @@ Last /@ FactorInteger@x == 2; t = Table[0, {10}]; Do[ If[ semiPrimeQ@n, c = Count[IntegerQ /@ Sqrt[n - Range@Floor[n^(1/3)]^3], True]; If[ t[[c + 1]] == 0, t[[c + 1]] = n; Print[{c, n}] ]], {n, 731000000}]; t

CROSSREFS
KEYWORD

more,nonn

AUTHOR

Jonathan Vos Post (jvospost2(AT)yahoo.com) & Robert G. Wilson v (rgwv(AT)rgwv.com), Sep 29 2006

STATUS

approved