_Jonathan Vos Post (jvospost3(AT)gmail.com) _ & Robert G. Wilson v, Sep 29 2006
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
_Jonathan Vos Post (jvospost3(AT)gmail.com) _ & Robert G. Wilson v, Sep 29 2006
a(7) = 1632201497 = 38425^2 + 538^3 = 38202^2 + 557^3 = 36741^2 + 656^3 = 26177^2 + 982^3 = 18555^2 + 1088^3 = 13477^2 + 1132^3 = 1292^2 + 1177^3. [From _Donovan Johnson (donovan.johnson(AT)yahoo.com), _, Aug 31 2008]
Contribution from _Donovan Johnson (donovan.johnson(AT)yahoo.com), _, Mar 01 2010: (Start)
a(7) from _Donovan Johnson (donovan.johnson(AT)yahoo.com), _, Aug 31 2008
a(8)-a(12) from _Donovan Johnson (donovan.johnson(AT)yahoo.com), _, Mar 01 2010
Jonathan Vos Post (jvospost3(AT)gmail.com) & _Robert G. Wilson v (rgwv(AT)rgwv.com), _, Sep 29 2006
4, 9, 65, 11665, 27289, 3030569, 6808609, 1632201497, 10553247449, 843404126561, 2101614761177, 62537392166201, 100301302204489
Contribution from Donovan Johnson (donovan.johnson(AT)yahoo.com), Mar 01 2010: (Start)
a(8) = 10553247449 = 102729^2 + 2^3 = 102393^2 + 410^3 = 101551^2 + 622^3 = 101371^2 + 652^3 = 80357^2 + 1600^3 = 63768^2 + 1865^3 = 13893^2 + 2180^3 = 4581^2 + 2192^3.
a(9) = 843404126561 = 917123^2 + 1318^3 = 902037^2 + 3098^3 = 866353^2 + 4528^3 = 833585^2 + 5296^3 = 634581^2 + 7610^3 = 521169^2 + 8300^3 = 478831^2 + 8500^3 = 259331^2 + 9190^3 = 23805^2 + 9446^3.
a(10) = 2101614761177 = 1449189^2 + 1136^3 = 1448961^2 + 1286^3 = 1448167^2 + 1642^3 = 1421577^2 + 4322^3 = 1315794^2 + 7181^3 = 1271813^2 + 7852^3 = 1119559^2 + 9466^3 = 1085568^2 + 9737^3 = 668475^2 + 11828^3 = 438431^2 + 12406^3.
a(11) = 62537392166201 = 7908053^2 + 448^3 = 7906101^2 + 3140^3 = 7863087^2 + 8918^3 = 7778399^2 + 12670^3 = 7537351^2 + 17890^3 = 7205845^2 + 21976^3 = 6649899^2 + 26360^3 = 5818649^2 + 30610^3 = 5684351^2 + 31150^3 = 2900985^2 + 37826^3 = 1009845^2 + 39476^3.
a(12) = 100301302204489 = 10013433^2 + 3190^3 = 9966435^2 + 9904^3 = 9922058^2 + 12285^3 = 9879183^2 + 13930^3 = 9821564^2 + 15657^3 = 9740881^2 + 17562^3 = 7540415^2 + 35154^3 = 2704995^2 + 45304^3 = 2667144^2 + 45337^3 = 1300067^2 + 46200^3 = 614915^2 + 46404^3 = 54519^2 + 46462^3.
(End)
more,nonn,new
a(8)-a(12) from Donovan Johnson (donovan.johnson(AT)yahoo.com), Mar 01 2010
4, 9, 65, 11665, 27289, 3030569, 6808609, 1632201497
a(7) = 1632201497 = 38425^2 + 538^3 = 38202^2 + 557^3 = 36741^2 + 656^3 = 26177^2 + 982^3 = 18555^2 + 1088^3 = 13477^2 + 1132^3 = 1292^2 + 1177^3. [From Donovan Johnson (donovan.johnson(AT)yahoo.com), Aug 31 2008]
more,nonn,new
Jonathan Vos Post (jvospost2jvospost3(AT)yahoogmail.com) & Robert G. Wilson v (rgwv(AT)rgwv.com), Sep 29 2006
a(7) from Donovan Johnson (donovan.johnson(AT)yahoo.com), Aug 31 2008
Least semiprime composed of a square and a positive cube in n different ways.
4, 9, 65, 11665, 27289, 3030569, 6808609
0,1
a(n) for n>0 must be odd.
a(0)=4 since it is the first semiprime (2*2) not of the form a^2+b^3.
a(1) = 9 = 1^2 + 2^3 = 3*3.
a(2) = 65 = 1^2 + 4^3 = 8^2 + 1^3 = 5*13.
a(3) = 11665 = 108^2 + 1^3 = 107^2 + 6^3 = 87^2 + 16^3 = 5*2333.
a(4) = 27289 = 165^2 + 4^3 = 129^2 + 22^3 = 108^2 + 25^2 = 17^2 + 30^3 = 29*941.
a(5) = 3030569 = 1671^2 + 62^3 = 1587^2 + 80^3 = 1038^2 + 125^3 = 913^2 + 130^3 = 409^2 + 142^3 = 103*29423.
a(6) = 6808609 = 2609^2 + 12^3 = 2445^2 + 94^3 = 1853^2 + 150^3 = 1647^2 + 160^3 = 1522^2 + 165^3 = 1124^2 + 177^3 = 103*66103.
semiPrimeQ[x_] := Plus @@ Last /@ FactorInteger@x == 2; t = Table[0, {10}]; Do[ If[ semiPrimeQ@n, c = Count[IntegerQ /@ Sqrt[n - Range@Floor[n^(1/3)]^3], True]; If[ t[[c + 1]] == 0, t[[c + 1]] = n; Print[{c, n}] ]], {n, 731000000}]; t
more,nonn
Jonathan Vos Post (jvospost2(AT)yahoo.com) & Robert G. Wilson v (rgwv(AT)rgwv.com), Sep 29 2006
approved