[go: up one dir, main page]

login
Revision History for A129383 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of g(x) - x*g(x^2), where g(x) is the g.f. of A001405.
(history; published version)
#7 by OEIS Server at Sat Feb 03 16:18:31 EST 2024
LINKS

G. C. Greubel, <a href="/A129383/b129383_1.txt">Table of n, a(n) for n = 0..1000</a>

#6 by Alois P. Heinz at Sat Feb 03 16:18:31 EST 2024
STATUS

reviewed

approved

Discussion
Sat Feb 03
16:18
OEIS Server: Installed first b-file as b129383.txt.
#5 by Stefano Spezia at Sat Feb 03 15:51:06 EST 2024
STATUS

proposed

reviewed

#4 by G. C. Greubel at Sat Feb 03 15:39:06 EST 2024
STATUS

editing

proposed

#3 by G. C. Greubel at Sat Feb 03 15:37:59 EST 2024
NAME

Expansion of g(x) -xg x*g(x^2), where g(x) is the g.f. of A001405.

LINKS

G. C. Greubel, <a href="/A129383/b129383_1.txt">Table of n, a(n) for n = 0..1000</a>

FORMULA

G.f.: 2/(1-2x2*x+sqrt(1-4x4*x^2)) -2x 2*x/(1-2x2*x^2+sqrt(1-4x^4)); a(n)=C(n,floor(n/2))-C((n-1)/2,floor((n-1)/*x^4))(1-(-1)^n)/2;.

a(n) = binomial(n,floor(n/2)) - (1/2)*(1-(-1)^n)*binomial((n-1)/2, floor((n-1)/4)).

MATHEMATICA

A129383[n_]:= With[{B=Binomial, F=Floor}, B[n, F[n/2]] - Mod[n, 2]*B[(n- 1)/2, F[(n-1)/4]]];

Table[A129383[n], {n, 0, 40}] (* G. C. Greubel, Feb 03 2024 *)

PROG

(Magma)

A129383:= func< n | Binomial(n, Floor(n/2)) - (n mod 2)*Binomial(Floor((n-1)/2), Floor((n-1)/4)) >;

[A129383(n): n in [0..40]]; // G. C. Greubel, Feb 03 2024

(SageMath)

def A129383(n): return binomial(n, n//2) - (n%2)*binomial((n-1)/2, (n-1)//4)

[A129383(n) for n in range(41)] # G. C. Greubel, Feb 03 2024

CROSSREFS
STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 18:59:20 EDT 2012
AUTHOR

_Paul Barry (pbarry(AT)wit.ie), _, Apr 12 2007

Discussion
Fri Mar 30
18:59
OEIS Server: https://oeis.org/edit/global/287
#1 by N. J. A. Sloane at Fri May 11 03:00:00 EDT 2007
NAME

Expansion of g(x)-xg(x^2), g(x) the g.f. of A001405.

DATA

1, 0, 2, 2, 6, 8, 20, 32, 70, 120, 252, 452, 924, 1696, 3432, 6400, 12870, 24240, 48620, 92252, 184756, 352464, 705432, 1351616, 2704156, 5199376, 10400600, 20056584, 40116600, 77555328, 155117520, 300533760, 601080390, 1166790240

OFFSET

0,3

COMMENTS

Partial sums are A129384.

FORMULA

G.f.: 2/(1-2x+sqrt(1-4x^2))-2x/(1-2x^2+sqrt(1-4x^4)); a(n)=C(n,floor(n/2))-C((n-1)/2,floor((n-1)/4))(1-(-1)^n)/2;

KEYWORD

easy,nonn

AUTHOR

Paul Barry (pbarry(AT)wit.ie), Apr 12 2007

STATUS

approved