G. C. Greubel, <a href="/A129383/b129383_1.txt">Table of n, a(n) for n = 0..1000</a>
G. C. Greubel, <a href="/A129383/b129383_1.txt">Table of n, a(n) for n = 0..1000</a>
reviewed
approved
proposed
reviewed
editing
proposed
Expansion of g(x) -xg x*g(x^2), where g(x) is the g.f. of A001405.
G. C. Greubel, <a href="/A129383/b129383_1.txt">Table of n, a(n) for n = 0..1000</a>
G.f.: 2/(1-2x2*x+sqrt(1-4x4*x^2)) -2x 2*x/(1-2x2*x^2+sqrt(1-4x^4)); a(n)=C(n,floor(n/2))-C((n-1)/2,floor((n-1)/*x^4))(1-(-1)^n)/2;.
a(n) = binomial(n,floor(n/2)) - (1/2)*(1-(-1)^n)*binomial((n-1)/2, floor((n-1)/4)).
A129383[n_]:= With[{B=Binomial, F=Floor}, B[n, F[n/2]] - Mod[n, 2]*B[(n- 1)/2, F[(n-1)/4]]];
Table[A129383[n], {n, 0, 40}] (* G. C. Greubel, Feb 03 2024 *)
(Magma)
A129383:= func< n | Binomial(n, Floor(n/2)) - (n mod 2)*Binomial(Floor((n-1)/2), Floor((n-1)/4)) >;
[A129383(n): n in [0..40]]; // G. C. Greubel, Feb 03 2024
(SageMath)
def A129383(n): return binomial(n, n//2) - (n%2)*binomial((n-1)/2, (n-1)//4)
[A129383(n) for n in range(41)] # G. C. Greubel, Feb 03 2024
approved
editing
_Paul Barry (pbarry(AT)wit.ie), _, Apr 12 2007
Expansion of g(x)-xg(x^2), g(x) the g.f. of A001405.
1, 0, 2, 2, 6, 8, 20, 32, 70, 120, 252, 452, 924, 1696, 3432, 6400, 12870, 24240, 48620, 92252, 184756, 352464, 705432, 1351616, 2704156, 5199376, 10400600, 20056584, 40116600, 77555328, 155117520, 300533760, 601080390, 1166790240
0,3
Partial sums are A129384.
G.f.: 2/(1-2x+sqrt(1-4x^2))-2x/(1-2x^2+sqrt(1-4x^4)); a(n)=C(n,floor(n/2))-C((n-1)/2,floor((n-1)/4))(1-(-1)^n)/2;
easy,nonn
Paul Barry (pbarry(AT)wit.ie), Apr 12 2007
approved