_N. J. A. Sloane (njas(AT)research.att.com) _ and Carlo Wood (carlo(AT)alinoe.com), Feb 13 2007
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
_N. J. A. Sloane (njas(AT)research.att.com) _ and Carlo Wood (carlo(AT)alinoe.com), Feb 13 2007
N. J. A. Sloane, <a href="/A126671/a126671.txt">Notes on Carlo Wood's Polynomials</a>
nonn,tabl,new
Contribution from Johannes W. Meijer (meijgia(AT)hotmail.com), Oct 07 2009: (Start)
The coefficients of the A165674 triangle are generated by the asymptotic expansion of the higher order exponential integral E(x,m=2,n). The a(n) formulae for the coefficients in the right hand columns of this triangle lead to Wiggen's triangle A028421 and their o.g.f.s. lead to the sequence given above. Some right hand columns of the A165674 triangle are A080663, A165676, A165677, A165678 and A165679.
(End)
E.g.f.: x*ln(1-(1+x)*y)/(x*y-1)/(1+x). - Vladeta Jovovic (vladeta(AT)Euneteunet.yurs), Feb 13 2007
nonn,tabl,new
N. J. A. Sloane, <a href="http://www.research.att.com/~njas/sequences/a126671.txt">Notes on Carlo Wood's Polynomials</a>
nonn,tabl,new
N. J. A. Sloane (njas (AT)research.att.com) and Carlo Wood (carlo(AT)alinoe.com), Feb 13 2007
Triangle read by rows: row n (n>=0) has g.f. Sum_{i=1..n} n!*x^i*(1+x)^(n-i)/(n+1-i).
0, 0, 1, 0, 1, 3, 0, 2, 7, 11, 0, 6, 26, 46, 50, 0, 24, 126, 274, 326, 274, 0, 120, 744, 1956, 2844, 2556, 1764, 0, 720, 5160, 16008, 28092, 30708, 22212, 13068, 0, 5040, 41040, 147120, 304464, 401136, 351504, 212976, 109584, 0, 40320
1,6
The first nonzero column gives the factorial numbers, which are Stirling_1(*,1), the rightmost diagonal gives Stirling_1(*,2), so this triangle may be regarded as interpolating between the first two columns of the Stirling numbers of the first kind.
This is a slice (the right-hand wall) through the infinite square pyramid described in the link. The other three walls give A007318 and A008276 (twice).
N. J. A. Sloane, <a href="http://www.research.att.com/~njas/sequences/a126671.txt">Notes on Carlo Wood's Polynomials</a>
Recurrence: T(n,0) = 0; for n>=0, i>=1, T(n+1,i) = (n+1)*T(n,i) + n!*binomial(n,i).
E.g.f.: x*ln(1-(1+x)*y)/(x*y-1)/(1+x). - Vladeta Jovovic (vladeta(AT)Eunet.yu), Feb 13 2007
Triangle begins:
0,
0, 1,
0, 1, 3,
0, 2, 7, 11,
0, 6, 26, 46, 50,
0, 24, 126, 274, 326, 274,
0, 120, 744, 1956, 2844, 2556, 1764,
0, 720, 5160, 16008, 28092, 30708, 22212, 13068,
0, 5040, 41040, 147120, 304464, 401136, 351504, 212976, 109584,
0, 40320, 367920, 1498320, 3582000, 5562576, 5868144, 4292496, 2239344, 1026576, ...
for n from 1 to 15 do t1:=add( n!*x^i*(1+x)^(n-i)/(n+1-i), i=1..n); series(t1, x, 100); lprint(seriestolist(%)); od:
nonn,tabl
njas and Carlo Wood (carlo(AT)alinoe.com), Feb 13 2007
approved