proposed
approved
proposed
approved
editing
proposed
Bender, E. A. and Goldman, J. R. "On the Applications of Moebius Inversion in Combinatorial Analysis." Amer. Math. Monthly 82, 789-803, 1975.
E. A. Bender and J. R. Goldman, <a href="https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/BenderGoldman
approved
editing
editing
approved
M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
approved
editing
M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
editing
approved
Charles R Greathouse IV, <a href="/A101638/b101638.txt">Table of n, a(n) for n = 1..10000</a>
(PARI) a(n)=my(f=factor(n)[, 2], v=apply(k->sum(i=1, #f, f[i]>k), [0..3])); v[4] + v[3]*(v[1]-1) + binomial(v[2], 2) + v[2]*binomial(v[1]-1, 2) + binomial(v[1], 4) \\ Charles R Greathouse IV, Sep 14 2015
approved
editing
editing
approved
a(n) = the number Number of distinct 4-almost primes A014613 which are factors of n.
approved
editing