(PARI) N=40; f=x; g=1; for(n=1, N, g/=f; f+=g+O(x^N)); Vec(1/f)
easy,sign,new
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
(PARI) N=40; f=x; g=1; for(n=1, N, g/=f; f+=g+O(x^N)); Vec(1/f)
easy,sign,new
Taylor series of 1/f(x) with recursively defined function f(x) from A109087.
0, 1, -1, -1, 4, -1, -11, 11, 26, -46, -70, 202, 160, -936, 252, 3119, -4379, -3459, 14888, -20536, 29732, 38061, -479128, 960501, 1356685, -8916019, 8540446, 35338281, -110022439, 5461908, 570854415, -1033426187, -1165212555, 7430011628, -6748665176, -27528038218, 81920080445, 10199574479
0,5
sum(n = 0, infinity)a(n)x^n = 1/f(x).
1/f(x) = x - x^2 - x^3 + 4*x^4 - x^5 - 11*x^6 + 11*x^7 + 26*x^8 - 46*x^9 - 70*x^10 + 202*x^11 + 160*x^12 - 936*x^13 + 252*x^14 + 3119*x^15 + O(x^16)
(PARI) N=40; f=x; g=1; for(n=1, N, g/=f; f+=g+O(x^N)); Vec(1/f)
easy,sign
Nikolaus Meyberg (Nikolaus.Meyberg(AT)t-online.de), Jun 20 2005
approved