[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A109088 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Taylor series of 1/f(x) with recursively defined function f(x) from A109087.
(history; published version)
#2 by N. J. A. Sloane at Fri Sep 29 03:00:00 EDT 2006
PROG

(PARI) N=40; f=x; g=1; for(n=1, N, g/=f; f+=g+O(x^N)); Vec(1/f)

KEYWORD

easy,sign,new

#1 by N. J. A. Sloane at Tue Jul 19 03:00:00 EDT 2005
NAME

Taylor series of 1/f(x) with recursively defined function f(x) from A109087.

DATA

0, 1, -1, -1, 4, -1, -11, 11, 26, -46, -70, 202, 160, -936, 252, 3119, -4379, -3459, 14888, -20536, 29732, 38061, -479128, 960501, 1356685, -8916019, 8540446, 35338281, -110022439, 5461908, 570854415, -1033426187, -1165212555, 7430011628, -6748665176, -27528038218, 81920080445, 10199574479

OFFSET

0,5

FORMULA

sum(n = 0, infinity)a(n)x^n = 1/f(x).

EXAMPLE

1/f(x) = x - x^2 - x^3 + 4*x^4 - x^5 - 11*x^6 + 11*x^7 + 26*x^8 - 46*x^9 - 70*x^10 + 202*x^11 + 160*x^12 - 936*x^13 + 252*x^14 + 3119*x^15 + O(x^16)

PROG

(PARI) N=40; f=x; g=1; for(n=1, N, g/=f; f+=g+O(x^N)); Vec(1/f)

CROSSREFS
KEYWORD

easy,sign

AUTHOR

Nikolaus Meyberg (Nikolaus.Meyberg(AT)t-online.de), Jun 20 2005

STATUS

approved