_Amarnath Murthy (amarnath_murthy(AT)yahoo.com), _, Apr 03 2004
_Amarnath Murthy (amarnath_murthy(AT)yahoo.com), _, Apr 03 2004
Edited, corrected and extended by _David Wasserman (dwasserm(AT)earthlink.net), _, Mar 21 2007
a(14)-a(17) from _Donovan Johnson (donovan.johnson(AT)yahoo.com), _, Sep 13 2008
2, 6, 30, 210, and 510510 are primorials (A002110). There are no more primorials in the first 300 terms.
hard,nonn,new
2, 6, 30, 210, 2730, 39270, 510510, 23393370, 363993630, 64790866140, 530514844860, 126408523110870, 3425113062060690, 660393717163700520, 26657280574571657010, 3448055881024876471350, 308480161111936386482910
hard,more,nonn,new
a(14)-a(17) from Donovan Johnson (donovan.johnson(AT)yahoo.com), Sep 13 2008
Least number with n distinct prime divisors arising as the product of successive two or more consecutive integers.
2, 6, 60, 30, 210, 55440, 2402402730, 39270, 510510, 23393370, 363993630, 64790866140, 530514844860, 126408523110870, 3425113062060690
2, 6, and 30, 210 , and 510510 are primorials (A002110), 210 = 2*3*5*7. Conjecture: There are no other primorial more primorials in the first 300 terms. (2) a(n) == 0 (mod primorial(n)).
Upper bounds for a(14)-a(18): 660393717163700520, 28386773771493397260, 3448055881024876471350, 308480161111936386482910, 32521466098360753728404190.
a(137) =240240 510510 =10*11*12*13 714*14 715 has prime divisors 2, 3, 5, 7, 11, 13 and 17.
hard,more,nonn,new
Edited, corrected and extended by David Wasserman (dwasserm(AT)earthlink.net), Mar 21 2007
2,6, and 210 are primorials (A002110), 210 = 2*3*5*7. Conjecture: There are no other primorial terms. (2) a(n) == 0 (mod primorial(n)).
more,nonn,new
Least number with n prime divisors arising as the product of successive integers.
2, 6, 60, 210, 55440, 240240
1,1
2,6,and 210 are primorials (A002110), 210 = 2*3*5*7. Conjecture: There are no other primorial terms. (2) a(n) == 0 (mod primorial(n)).
a(13) =240240=10*11*12*13*14 has prime divisors 2,3,5,7,11,13.
Cf. A093450.
more,nonn
Amarnath Murthy (amarnath_murthy(AT)yahoo.com), Apr 03 2004
approved