G. C. Greubel, <a href="/A088307/b088307_1.txt">Rows n = 1..50 of the triangle, flattened</a>
G. C. Greubel, <a href="/A088307/b088307_1.txt">Rows n = 1..50 of the triangle, flattened</a>
proposed
approved
editing
proposed
0, 2, 5, 0, 10, 13, 0, 17, 0, 25, 0, 26, 29, 34, 41, 0, 37, 0, 0, 0, 61, 0, 50, 53, 58, 65, 74, 85, 0, 65, 0, 73, 0, 89, 0, 113, 0, 82, 85, 0, 97, 106, 0, 130, 145, 0, 101, 0, 109, 0, 0, 0, 149, 0, 181, 0, 122, 125, 130, 137, 146, 157, 170, 185, 202, 221, 0
1,21
G. C. Greubel, <a href="/A088307/b088307_1.txt">Rows n = 1..50 of the triangle, flattened</a>
02;
Join[{0}, Table[If[CoprimeQ[n, k], n^2+k^2, 0], {n, 2, 20}, {k, n}]//Flatten] (* Harvey P. Dale, Jul 13 2018 *)
if GCD(k, n ) eq 1 then return 0n^2+k^2;
elif GCD(k, n) eq 1 then return n^2+k^2;
if (gcd(n, k)==1): return 0n^2 + k^2
elif (gcd(n, k)==1): return n^2 + k^2
editing
proposed
Triangle , read by rows, 1 <= k <= n: T(n,k) = n^2 + k^2 if gcd(n,k)=1, otherwise 0.
0, 5, 0, 10, 13, 0, 17, 0, 25, 0, 26, 29, 34, 41, 0, 37, 0, 0, 0, 61, 0, 50, 53, 58, 65, 74, 85, 0, 65, 0, 73, 0, 89, 0, 113, 0, 82, 85, 0, 97, 106, 0, 130, 145, 0, 101, 0, 109, 0, 0, 0, 149, 0, 181, 0, 122, 125, 130, 137, 146, 157, 170, 185, 202, 221, 0, 145, 0, 0, 0, 169
G. C. Greubel, <a href="/A088307/b088307.txt">Rows n = 1..50 of the triangle, flattened</a>
T(n, n) = 0.
T(n, 1) = A002522(n).
T(2*n+1, 2) = A078370(n).
Sum_{k=1..n} T(n, k) = A000010(n) = #{m: 1<=k<=n and T(n,m)>0} = Sum_{k=1..n} A057427(T(n,m)).
From G. C. Greubel, Dec 15 2022: (Start)
T(n, n-1) = A001844(n).
T(n, n-2) = ((1-(-1)^n)/2) * A008527((n+1)/2).
T(2*n, n) = 5*A000007(n-1).
T(2*n+1, n) = A079273(n-1).
T(2*n-1, n) = A190816(n) - 2*[n=1].
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A053818(n+1) - [n=1]. (End)
n=6, k=5: 6^2 + 5^2 = 36 + 25 = 61: (6^2 - 5^2)^2 + (2*6*5)^2 = 11^2 + 60^2 = 121 + 3600 = 3721 = 61^2 = T(6,5)^2;
n=7, k=3: 7^2 + 3^2 = 49 + 9 = 58: (7^2 - 3^2)^2 + (2*7*3)^2 = 40^2 + 42^2 = 1600 + 1764 = 3364 = 58^2 = T(7,3)^2.
0,;
5, 0,;
10, 13, 0,;
17, 0, 25, 0,;
26, 29, 34, 41, 0,;
37, 0, 0, 0, 61, 0,;
(Magma)
function A088307(n, k)
if n eq 1 then return 0;
elif GCD(k, n) eq 1 then return n^2+k^2;
else return 0;
end if; return A088307;
end function;
[A088307(n, k): k in [1..n], n in [1..13]]; // G. C. Greubel, Dec 16 2022
(SageMath)
def A088307(n, k):
if (n==1): return 0
elif (gcd(n, k)==1): return n^2 + k^2
else: return 0
flatten([[A088307(n, k) for k in range(1, n+1)] for n in range(1, 14)]) # G. C. Greubel, Dec 16 2022
approved
editing
proposed
approved
editing
proposed
n=6, k=5: 6^2 + 5^2 = 36 + 25 = 61: (6^2 - 5^2)^2 + (2*6*5)^2 = 11^2 + 60^2 = 121 + 3600 = 3721 = 61^2 = T(6,5)^2;
11n=7, k=3: 7^2 + 3^2 = 49 + 9 = 58: (7^2 - 3^2)^2 + (2*7*3)^2 = 40^2 + 6042^2 = 121 1600 + 3600 1764 = 3721 3364 = 6158^2 = T(6,57,3)^2;.
n=7, k=3: 7^2 + 3^2 = 49 + 9 = 58: (7^2 - 3^2)^2 + (2*7*3)^2 =
40^2 + 42^2 = 1600 + 1764 = 3364 = 58^2 = T(7,3)^2.
Triangle begins:
0,
5, 0,
10, 13, 0,
17, 0, 25, 0,
26, 29, 34, 41, 0,
37, 0, 0, 0, 61, 0,
...
proposed
editing