proposed
reviewed
proposed
reviewed
editing
proposed
Paul Barry and A. Hennessy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Barry2/barry126.html">A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations </a>, J. Int. Seq. 14 (2011) # 11.3.8.
approved
editing
proposed
approved
editing
proposed
The operator DELTA takes two sequences r = (r_0, r_1, ...), s = (s_0, s_1, ...) and produces a triangle T(n, k), 0 <= k <= n, as follows:
Let q(k) = x*r_k + y*s_k for k >= 0; let P(n, k) (n >= 0, k >= -1) be defined recursively by P(0, k) = 1 for k >= 0; P(n, -1) = 0 for n >= 1; P(n, k) = P(n, k-1) + q(k)*P(n-1, k+1) for n >= 1, k >= 0. Then P(n, k) is a homogeneous polynomial in x and y of degree n and T(n, k) = coefficient of x^(n-k)*y^k in P(n, 0).
The operator DELTA takes two sequences r = (r_0, r_1, ...), s = (s_0, s_1, ...) and produces a triangle T(n, k), 0 <= k <= n, as follows:
Let q(k) = x*r_k + y*s_k for k >= 0; let P(n, k) (n >= 0, k >= -1) be defined recursively by P(0, k) = 1 for k >= 0; P(n, -1) = 0 for n >= 1; P(n, k) = P(n, k-1) + q(k)*P(n-1, k+1) for n >= 1, k >= 0. Then P(n, k) is a homogeneous polynomial in x and y of degree n and T(n, k) = coefficient of x^(n-k)*y^k in P(n, 0).
proposed
editing
editing
proposed
# The operator DELTA takes two sequences r = (r_0, r_1, ...), s = (s_0, s_1, ...) and produces a triangle T(n, k), 0 <= k <= n, as follows: (Start)
Let q(k) = x*r_k + y*s_k for k >= 0; let P(n, k) (n >= 0, k >= -1) be defined recursively by P(0, k) = 1 for k >= 0; P(n, -1) = 0 for n >= 1; P(n, k) = P(n, k-1) + q(k)*P(n-1, k+1) for n >= 1, k >= 0. Then P(n, k) is a homogeneous polynomial in x and y of degree n and T(n, k) = coefficient of x^(n-k)*y^k in P(n, 0).
Then P(n, k) is a homogeneous polynomial in x and y of degree n and T(n, k) = coefficient of x^(n-k)*y^k in P(n, 0). (End)
proposed
editing
editing
proposed
In general, the triangle [r_0,r_1,r_2,r_3,...] DELTA [s_0,s_1,s_2,s_3,...] has generating function 1/(1-(r_0*x+s_0*x*y)/(1-(r_1*x+s_1*x*y)/(1-(r_2*x+s_2*x*y)/1-(r_3*x+s_3*x*y)/(1-...(continued fraction). See also the Formula section below.
# The operator DELTA takes two sequences r = (r_0, r_1, ...), s = (s_0, s_1, ...) and produces a triangle T(n, k), 0 <= k <= n, as follows: (Start)
Then P(n, k) is a homogeneous polynomial in x and y of degree n and T(n, k) = coefficient of x^(n-k)*y^k in P(n, 0). (End)
approved
editing