reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Eigensequence of the triangle = A165489: (1, 1, 2, 6, 23, 105, 550, 3236, ...). - Gary W. Adamson, Sep 20 2009
This triangle * [1,2,3,...] = A134378: (1, 2, 5, 14, 44, 158, 663, ...) = row sums of triangle A134379. - Gary W. Adamson, Oct 22 2007
approved
editing
editing
approved
In general, the triangle [r_0,r_1,r_2,r_3,...] DELTA [s_0,s_1,s_2,s_3,...] has generating function 1/(1-(r_0*x+s_0*x*y)/(1-(r_1*x+s_1*x*y)/(1-(r_2*x+s_2*x*y)/(1-(r_3*x+s_3*x*y)/(1-...(continued fraction). See also the Formula section below.
approved
editing
editing
approved
Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Barry3/barry93.html">Continued fractions and transformations of integer sequences</a>, JIS 12 (2009) , Article 09.7.6.
Paul Barry and A. Hennessy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Barry2/barry126.html">A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations</a>, J. Int. Seq. 14 (2011) # , Article 11.3.8.
reviewed
editing