proposed
approved
proposed
approved
editing
proposed
D.D. Frey, J. A. Sellers, Generalizing Bailey's generalization of the Catalan numbers, The Fibonacci Quarterly, 39 (2001) 142-148.
D. D. Frey and J. A. Sellers, <a href="http://www.fq.math.ca/Scanned/39-2/frey.pdf">Generalizing Bailey's generalization of the Catalan numbers</a>, The Fibonacci Quarterly, 39 (2001) 142-148.
approved
editing
_Wolfdieter Lang (wolfdieter.lang(AT)physik.uni-karlsruhe.de), _, Jul 12 2001
a(0, 0)=1, a(n, -1)=0, n >= 1; a(n, r)=0 if r>3*n; a(n, r)=a(n, r-1)+a(n-1, r) else.
G.f. for column r=3*k+j, k >= 0, j=1, 2, 3: (x^(k+1))*N(4; k, x)/(1-x)^(3*k+1+j), with the row polynomials N(4; k, x) of array A062751.
nonn,easy,tabf,new
The step width sequence of this tabf staircase array is [1,3,3,3,....], i.e. the degree of the row polynomials is [0,3,6,9,...]= A008585.
nonn,easy,tabf,new
D.D. Frey, J. A. Sellers, Generalizing Bailey's generalization of the Catalan numbers, The Fibonacci Quarterly, 39 (2001) 142-148.
nonn,easy,tabf,new
Generalized Catalan array FS(4; n,r).
In the Frey-Sellers ref. reference this array is called {n over r}_{m-1}, with m=4.
G.f. for column r=3*k+j, k >= 0, j=1,2,3: (x^(k+1))*N(4; k,x)/(1-x)^(3*k+1+j), with the row polynomials N(4; k,x) of array A062751.
{1}; {1,1,1,1}; {1,2,3,4,4,4,4}; {1,3,6,10,14,18,22,22,22,22}; ...; N(4; 1,x)=(2-x)*(2-2*x+x^2).
nonn,easy,tabf,new
{1};{1,1,1,1};{1,2,3,4,4,4,4};{1,3,6,10,14,18,22,22,22,22}; ...; N(4;1,x)=(2-x)*(2-2*x+x^2).
nonn,easy,tabf,new