[go: up one dir, main page]

login
Revision History for A048575 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Pisot sequences L(2,5), E(2,5).
(history; published version)
#39 by Joerg Arndt at Sat Dec 30 23:47:39 EST 2023
STATUS

editing

approved

#38 by Paolo P. Lava at Sat Dec 30 12:49:43 EST 2023
FORMULA

a(n) = [(3/2)+(1/2)*sqrt(5)]^n+(2/5)*[(3/2)+(1/2)*sqrt(5)]^n*sqrt(5)-(2/5)*[(3/2)-(1/2)*sqrt(5)]^n *sqrt(5)+[(3/2)-(1/2)*sqrt(5)]^n, with n>=0. [Paolo P. Lava, Nov 20 2008]

STATUS

approved

editing

#37 by Charles R Greathouse IV at Thu Sep 08 08:44:57 EDT 2022
PROG

(MAGMAMagma) [Fibonacci(2*n+3): n in [0..40]]; // Vincenzo Librandi, Jul 12 2015

Discussion
Thu Sep 08
08:44
OEIS Server: https://oeis.org/edit/global/2944
#36 by R. J. Mathar at Tue Jun 11 07:57:41 EDT 2019
STATUS

editing

approved

#35 by R. J. Mathar at Tue Jun 11 07:57:23 EDT 2019
LINKS

Boothby, T.; Burkert, J.; Eichwald, M.; Ernst, D. C.; Green, R. M.; Macauley, M. <a href="https://doi.org/10.1007/s10801-011-0327-z">On the cyclically fully commutative elements of Coxeter groups</a>, J. Algebr. Comb. 36, No. 1, 123-148 (2012), Section 5.1

FORMULA

a(n) = FibA000045(2n+3). a(n) = 3a(n-1) - a(n-2).

a(n) = 2*A001906(n+1)-A001906(n). - R. J. Mathar, Jun 11 2019

STATUS

approved

editing

#34 by N. J. A. Sloane at Sat Sep 10 09:15:13 EDT 2016
STATUS

editing

approved

#33 by N. J. A. Sloane at Sat Sep 10 09:15:11 EDT 2016
LINKS

Mohammad K. Azarian, <a href="http://www.m-hikari.com/ijcms/ijcms-2012/37-40-2012/azarianIJCMS37-40-2012.pdf">Fibonacci Identities as Binomial Sums</a>, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876 (See Corollary 1 (ix)).

STATUS

approved

editing

#32 by N. J. A. Sloane at Sat Sep 10 09:14:13 EDT 2016
STATUS

editing

approved

#31 by N. J. A. Sloane at Sat Sep 10 09:14:03 EDT 2016
REFERENCES

Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.

STATUS

approved

editing

#30 by Bruno Berselli at Wed Jul 27 06:02:34 EDT 2016
STATUS

reviewed

approved