(MAGMAMagma) I:=[1, 5, 7, 9]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, May 16 2012
(MAGMAMagma) I:=[1, 5, 7, 9]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, May 16 2012
editing
approved
editing
approved
a(n) = 2*(n + floor((n+1)/3)) - 1. - Wolfdieter Lang, Sep 11 2021
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
1, 5, 7, 9, 13, 15, 17, 21, 23, 25, 29, 31, 33, 37, 39, 41, 45, 47, 49, 53, 55, 57, 61, 63, 65, 69, 71, 73, 77, 79, 81, 85, 87, 89, 93, 95, 97, 101, 103, 105, 109, 111, 113, 117, 119, 121, 125, 127, 129, 133, 135, 137, 141, 143, 145, 149, 151, 153, 157, 159
<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. _- _Vincenzo Librandi_, May 16 2012
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (24*n-9-4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-3, a(3k-2) = 8k-7. (End)
A047478:=n->(24*n-9-4*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047478(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
Select[Range[0, 300], MemberQ[{1, 5, 7}, Mod[#, 8]]&] (* Vincenzo Librandi, May 16 2012 *)
approved
editing
<a href="/index/Rec">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).