proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
Chai Wah Wu, <a href="/A022450/b022450.txt">Table of n, a(n) for n = 1..900</a>
approved
editing
Clark Kimberling (ck6(AT)evansville.edu)
C. Kimberling, Fractal sequences and interspersions, Ars Combinatoria, vol . 45 p 157 1997.
nonn,new
nonn
C. Kimberling, <a href="http://cedarfaculty.evansville.edu/~ck6/integer/intersp.html">Interspersions
nonn,new
nonn
a(1) = 2; a(n+1) = a(n)-th composite.
Clark C. Kimberling, Fractal sequences and interspersions, Ars Combinatoria, vol 45 p 157 1997.
C. Kimberling, <a href="http://cedar.evansville.edu/~ck6/integer/intersp.html">Interspersions</a>
g[ n_Integer ] := (k = n + PrimePi[ n ] + 1; While[ k - PrimePi[ k ] - 1, k++ ]; k); NestList[ g, 2, 45 ]
nonn,new
nonn
Clark Kimberling (ck6@cedar.(AT)evansville.edu)
a(1) = 2; a(n+1) = a(n)th nonprime, beginning with a(1) = 6 = 3rd nonprimecomposite.
2, 6, 12, 21, 33, 49, 69, 94, 125, 164, 212, 270, 339, 422, 520, 636, 774, 933, 1121, 1339, 1590, 1880, 2210, 2587, 3021, 3512, 4074, 4710, 5427, 6239, 7155, 8183, 9339, 10637, 12084, 13705, 15517, 17534, 19773, 22266, 25030, 28095, 31484, 35239, 39387, 43960
0,1,1
Clark Kimberling, Fractal sequences and interspersions, to appear in Ars Combinatoria, vol 45 p 157 1997.
<a href="http://cedar.evansville.edu/~ck6/integer/intersp.html">Interspersions</a>
nonn,new
nonn
a(n+1) = a(n)th nonprime, beginning with a(1) = 6 = 3rd nonprime.
6, 12, 21, 33, 49, 69, 94, 125, 164, 212, 270
0,1
Clark Kimberling, Fractal sequences and interspersions, to appear in Ars Combinatoria.
nonn
Clark Kimberling (ck6@cedar.evansville.edu)
approved