[go: up one dir, main page]

login
Revision History for A003989 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

newer changes | Showing entries 11-20 | older changes
Triangle T from the array A(x, y) = gcd(x,y), for x >= 1, y >= 1, read by antidiagonals.
(history; published version)
#129 by Peter Bala at Sun Oct 15 15:27:01 EDT 2023
LINKS

Marc Chamberland, <a href="https://doi.org/10.1016/j.laa.2011.08.030">Factored matrices can generate combinatorial identities</a>,Linear Algebra and its ApplicationsVolume 438, Issue 4, 15 February 2013, Pages 1667-1677,.

#128 by Peter Bala at Sun Oct 15 14:49:49 EDT 2023
LINKS

Marc Chamberland, <a href="https://doi.org/10.1016/j.laa.2011.08.030">Factored matrices can generate combinatorial identities</a>,Linear Algebra and its ApplicationsVolume 438, Issue 4, 15 February 2013, Pages 1667-1677,

FORMULA

LU decomposition of square array = A051731 * transpose(A054522) (see Chamberland, p. 1673). - Peter Bala, Oct 15 2023

STATUS

approved

editing

#127 by N. J. A. Sloane at Sat Jun 19 14:40:23 EDT 2021
STATUS

editing

approved

#126 by N. J. A. Sloane at Sat Jun 19 14:40:20 EDT 2021
EXAMPLE

x\y 1 2 3 4 5 6 ...

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1: , 1 , 1 , 1 , 1 , 1 , 1 ...]

[1, 2, 1, 2, 1, 2, 1, 2, 1, 2: , 1 , 2 , 1 , 2 , 1 , 2 ...]

[1, 1, 3, 1, 1, 3, 1, 1, 3: , 1 , 1 , 3 , 1 , 1 , 3 ..., 1]

[1, 2, 1, 4, 1, 2, 1, 4: , 1 , 2 , 1 , 4 , 1 , 2 ..., 1, 4]

[1, 1, 1, 1, 5, 1, 1, 1, 1, 5: , 1 , 1 , 1 , 1 , 5 , 1 ...]

[1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2]

[1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1]

[1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8]

[1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1]

[1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1]

[1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 4]

STATUS

approved

editing

#125 by N. J. A. Sloane at Sat Feb 13 14:35:44 EST 2021
STATUS

proposed

approved

#124 by Michel Marcus at Sat Feb 13 12:27:37 EST 2021
STATUS

editing

proposed

#123 by Michel Marcus at Sat Feb 13 12:27:29 EST 2021
LINKS

Grant Cairns, <a href="httphttps://www.combinatoricsdoi.org/Volume_8/Abstracts/v8i1n610.html37236/1591">Queens on Non-square Tori</a>, El. J. Combinatorics, N6, 2001.

STATUS

proposed

editing

#122 by Mats Granvik at Sat Feb 13 12:18:09 EST 2021
STATUS

editing

proposed

#121 by Mats Granvik at Sat Feb 13 12:17:56 EST 2021
FORMULA

Dirichlet generating function: Sum_{ n>=1 } Sum_{ k>=1 } gcd(n, k)/n^s/k^c = zeta(s)*zeta(c)*zeta(s + c - 1)/zeta(s + c). - Mats Granvik, Feb 13 2021

#120 by Mats Granvik at Sat Feb 13 12:17:22 EST 2021
FORMULA

Dirichlet generating function: Sum_{ n>=1 } Sum_{ k>=1 } gcd(n, k)/n^s/k^c = zeta(s)*zeta(c)*zeta(s + c - 1)/zeta(s + c). - Mats Granvik, Feb 13 2021