OFFSET
1,5
COMMENTS
These partitions have Heinz numbers A370348.
EXAMPLE
The a(0) = 0 through a(8) = 12 partitions:
. . (11) (111) (211) (221) (222) (331) (2222)
(1111) (311) (2211) (511) (3221)
(2111) (3111) (2221) (3311)
(11111) (21111) (3211) (4211)
(111111) (4111) (5111)
(22111) (22211)
(31111) (32111)
(211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Length[#] > Length[Union@@Divisors/@#]&]], {n, 0, 30}]
CROSSREFS
The partitions are ranked by A370348.
For submultisets instead of parts on the LHS we get new, ranks A371167.
A000005 counts divisors.
Cf. A000792 nex_ones_max, A003963 h_prod, A014499 bpe_pri, A048249 nex_ones, A064573 ptns_use_pow_samepri, A066739 sum_of_prod, A319055 maxprod_ptn_relpri, A319616 co_bal_bmp, A319877 prix_prod_sqr_sqf, A320325 prix_prod_perpow, A322527 ptns_prod_pow_sqf, A322530 ptns_no1_prod_sqf, A355737 choose_div_each_prix_so_relpri, A355739 choose_div_each_prix_so_strict, A355741 choose_prifac_each_prix, A370803 ptns_mult_ways_diff_div_each, A370808 max_num_choices_div_each_pt_ptn, A370809 max_num_choices_prifac_each_pt_ptn, A371166 divs_less_prixdivs, A371169 leq_div_prix_prix, A371170 geq_div_prix_prix.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 16 2024
STATUS
editing