[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371171 revision #6

A371171
Number of integer partitions of n with more parts than distinct divisors of parts.
15
0, 0, 1, 1, 2, 4, 5, 9, 12, 18, 26, 34, 50, 65, 92, 121, 161, 209, 274, 353, 456, 590, 745, 950, 1195, 1507, 1885, 2350, 2923, 3611, 4465, 5485, 6735, 8223, 10050, 12195, 14822, 17909, 21653, 26047, 31340, 37557, 44990, 53708, 64068, 76241, 90583, 107418
OFFSET
1,5
COMMENTS
The Heinz numbers of these partitions are given by A370348.
EXAMPLE
The partition (3,2,1,1) has 4 parts {1,2,3,4} and 3 distinct divisors of parts {1,2,3}, so is counted under a(7).
The a(0) = 0 through a(8) = 12 partitions:
. . (11) (111) (211) (221) (222) (331) (2222)
(1111) (311) (2211) (511) (3221)
(2111) (3111) (2221) (3311)
(11111) (21111) (3211) (4211)
(111111) (4111) (5111)
(22111) (22211)
(31111) (32111)
(211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Length[#] > Length[Union@@Divisors/@#]&]], {n, 0, 30}]
CROSSREFS
The partitions are ranked by A370348.
The opposite version is A371173, ranked by A371168.
The RHS is represented by A370820, positions of twos A371127.
The version for equality is A371130 (ranks A370802), strict A371128.
For submultisets instead of parts on the LHS we get ranks A371167.
A000005 counts divisors.
Choosable partitions: A239312 (A368110), A355740 (A370320), A370592 (A368100), A370593 (A355529).
Sequence in context: A241411 A211373 A241734 * A039898 A083690 A241824
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 16 2024
STATUS
proposed