[go: up one dir, main page]

login
A370813 revision #6

A370813
Number of non-condensed integer factorizations of n into unordered factors > 1.
31
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0
OFFSET
1,32
COMMENTS
A multiset is condensed iff it is possible to choose a different divisor of each element.
EXAMPLE
The a(96) = 4 factorizations: (2*2*2*2*2*3), (2*2*2*2*6), (2*2*2*3*4), (2*2*2*12).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join @@ Table[Map[Prepend[#, d]&, Select[facs[n/d], Min @@ #>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], Length[Select[Tuples[Divisors /@ #], UnsameQ@@#&]]==0&]], {n, 100}]
CROSSREFS
Partitions not of this type are counted by A239312, ranks A368110.
Factors instead of divisors: A368413, complement A368414, unique A370645.
Partitions of this type are counted by A370320, ranks A355740.
Subsets of this type: A370583 and A370637, complement A370582 and A370636.
The complement is counted by A370814, partitions A370592, ranks A368100.
For a unique choice we have A370815, partitions A370595, ranks A370810.
A000005 counts divisors.
A001055 counts factorizations, strict A045778.
A355731 counts choices of a divisor of each prime index, firsts A355732.
Sequence in context: A287619 A133698 A219488 * A129251 A276077 A276935
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 04 2024
STATUS
editing