[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363405 revision #20

A363405
G.f. satisfies A(x) = exp( Sum_{k>=1} (A(x^k) + A(i*x^k) + A(-x^k) + A(i^3*x^k))/4 * x^k/k ), where i = sqrt(-1).
2
1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 5, 5, 5, 10, 12, 13, 13, 26, 34, 36, 37, 74, 97, 105, 107, 215, 293, 320, 328, 658, 905, 998, 1025, 2058, 2878, 3194, 3292, 6611, 9316, 10412, 10748, 21594, 30697, 34470, 35663, 71668, 102446, 115575, 119761, 240740, 345940, 391726, 406571, 817453, 1179322, 1339851
OFFSET
0,6
LINKS
FORMULA
A(x) = Sum_{k>=0} a(k) * x^k = 1/Product_{k>=0} (1-x^(4*k+1))^a(4*k).
A(x) * A(i*x) * A(-x) * A(i^3*x) = A(x^4).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k and d==1 mod 4} d * a(d-1) ) * a(n-k).
PROG
(PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, sum(m=0, 3, subst(A, x, I^m*x^k))/4*x^k/k)+x*O(x^n))); Vec(A);
CROSSREFS
Cf. A363337.
Sequence in context: A078635 A286305 A046768 * A274151 A216393 A045812
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 31 2023
STATUS
approved