[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350068 revision #4

A350068
Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A350063(i) = A350063(j), for all i, j >= 1.
2
1, 2, 2, 3, 2, 4, 2, 5, 3, 6, 2, 7, 2, 4, 4, 8, 2, 7, 2, 7, 6, 9, 2, 10, 3, 9, 5, 11, 2, 12, 2, 13, 4, 9, 4, 14, 2, 4, 9, 15, 2, 16, 2, 7, 7, 17, 2, 18, 3, 19, 9, 7, 2, 10, 6, 10, 9, 20, 2, 21, 2, 9, 7, 22, 4, 12, 2, 11, 4, 16, 2, 23, 2, 9, 7, 11, 4, 12, 2, 18, 8, 9, 2, 24, 9, 25, 17, 26, 2, 24, 6, 11, 20, 27, 9
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A046523(n), A350063(n)].
For all i, j >= 1: A305897(i) = A305897(j) => a(i) = a(j).
PROG
(PARI)
up_to = 3003;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A000265(n) = (n>>valuation(n, 2));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
A350063(n) = if(1==n, 0, A046523(A000265(A156552(n))));
Aux350068(n) = [A046523(n), A350063(n)];
v350068 = rgs_transform(vector(up_to, n, Aux350068(n)));
A350068(n) = v350068[n];
CROSSREFS
Cf. A000040 (positions of 2's), A001248 (of 3's).
Cf. also A101296, A305897, A350065.
Sequence in context: A363723 A350126 A323914 * A378603 A378601 A378602
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 29 2022
STATUS
editing