OFFSET
1,7
COMMENTS
This sequence is unbounded since by the Chinese Remainder Theorem there are arbitrarily long runs of consecutive numbers that are not cubefree.
The first occurrence of a(n) = 1, 2, ... is at n = 1, 7, 68, 1145, 18825, 15003967, ...
LINKS
Michael J. Mossinghoff, Tomás Oliveira e Silva, and Tim Trudgian, The distribution of k-free numbers, Mathematics of Computation, Vol. 90, No. 328 (2021), pp. 907-929; arXiv preprint, arXiv:1912.04972 [math.NT], 2019-2020.
FORMULA
Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = zeta(3) (A002117).
MATHEMATICA
cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 3 &]; Differences @ Select[Range[100], cubeFreeQ]
PROG
(PARI)
A003557(n) = (n/factorback(factorint(n)[, 1]));
isA004709(n) = issquarefree(A003557(n));
A349236list(first_n) = { my(v=vector(first_n), k=0, e=1); for(n=2, oo, if(isA004709(n), k++; v[k] = n-e; e = n); if(#v==k, return(v))); }; \\ Antti Karttunen, Nov 11 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 11 2021
STATUS
approved