OFFSET
0,2
COMMENTS
Binomial transform of A002293.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..500
FORMULA
G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x * (1 - x)^2 * A(x)^4.
G.f.: Sum_{k>=0} ( binomial(4*k,k) / (3*k + 1) ) * x^k / (1 - x)^(k+1).
a(n) ~ 283^(n + 3/2) / (2048 * sqrt(2*Pi) * n^(3/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021
D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n) -2*(2*n-1) *(91*n^2 -91*n +24)*a(n-1) +6*(n-1) *(155*n^2 -310*n +167)*a(n-2) -438*(n-1) *(n-2)*(2*n-3) *a(n-3) +283*(n-1)*(n-2) *(n-3)*a(n-4)=0. - R. J. Mathar, Aug 17 2023
MAPLE
A346646 := proc(n)
hypergeom([-n, 1/4, 1/2, 3/4], [2/3, 1, 4/3], -256/27) ;
simplify(%) ;
end proc:
seq(A346646(n), n=0..40) ; # R. J. Mathar, Jan 10 2023
MATHEMATICA
Table[Sum[Binomial[n, k] Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 21}]
nmax = 21; A[_] = 0; Do[A[x_] = 1/(1 - x) + x (1 - x)^2 A[x]^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 21; CoefficientList[Series[Sum[(Binomial[4 k, k]/(3 k + 1)) x^k/(1 - x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Table[HypergeometricPFQ[{1/4, 1/2, 3/4, -n}, {2/3, 1, 4/3}, -256/27], {n, 0, 21}]
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(4*k, k)/(3*k + 1)); \\ Michel Marcus, Jul 26 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 26 2021
STATUS
editing