[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345165 revision #16

A345165
Number of integer partitions of n without an alternating permutation.
51
0, 0, 1, 1, 2, 2, 5, 5, 8, 11, 17, 20, 29, 37, 51, 65, 85, 106, 141, 175, 223, 277, 351, 432, 540, 663, 820, 999, 1226, 1489, 1817, 2192, 2654, 3191, 3847, 4603, 5517, 6578, 7853, 9327, 11084, 13120, 15533, 18328, 21621, 25430, 29905, 35071, 41111, 48080, 56206, 65554, 76420, 88918
OFFSET
0,5
COMMENTS
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
From Joseph Likar, Aug 21 2023: (Start)
This sequence can be generated by the following pseudo code:
outputMap[2 to n] = n
for usedNumbers = 2 to n
for medianSize = ceil(usedNumbers / 2) + 1 to usedNumbers - 1
for medianValue = 1 to floor((n - usedNumbers + medianSize) / medianSize)
for numbersAboveMedian = 0 to usedNumbers - medianSize
calculateState(usedNumbers, medianSize, medianValue, numbersAboveMedian)
next numbersAboveMedian
next medianValue
next medianSize
if (usedNumbers mod 2 == 1)
for medianValue = 2 to Math.floor((n - usedNumbers + ceil(usedNumbers / 2))/ceil(usedNumbers / 2))
for numbersAboveMedian = 1 to usedNumbers - ceil(usedNumbers / 2) - 1
calculateState(usedNumbers, ceil(usedNumbers / 2), medianValue, numbersAboveMedian)
next numbersAboveMedian
next medianValue
endif
next usedNumbers
function calculateState(usedNumbers, medianSize, medianValue, numbersAboveMedian)
numbersBelowMedian = usedNumbers - medianSize - numbersAboveMedian)
bottomQTerms = gaussianBinomial(numbersBelowMedian + (medianValue - 1) - 1, numbersBelowMedian)
topQTerms = gaussianBinomial(n - 1 - 2 * numbersAboveMedian, numbersAboveMedian)
for bottomOffset = 0 to length(bottomQTerms) - 1
for topOffset = 0 to length(topQTerms) - 1
partitionSum = bottomOffset + topOffset + numbersBelowMedian + (medianSize * medianValue) + (numbersAboveMedian * (medianValue + 1));
if (partitionSum <= n)
outputMap[partitionSum] += bottomQTerms[bottomOffset] * topQTerms[topOffset]
next topOffset
next bottomOffset
end
where gaussianBinomial(m, n) takes the Gaussian Binomial (m choose n)_q and returns a zero-indexed array where each value in the array is the coefficient of q^index in the Gaussian binomial expansion. (End)
EXAMPLE
The a(2) = 1 through a(9) = 11 partitions:
(11) (111) (22) (2111) (33) (2221) (44) (333)
(1111) (11111) (222) (4111) (2222) (3222)
(3111) (31111) (5111) (6111)
(21111) (211111) (41111) (22221)
(111111) (1111111) (221111) (51111)
(311111) (321111)
(2111111) (411111)
(11111111) (2211111)
(3111111)
(21111111)
(111111111)
MATHEMATICA
wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Table[Length[Select[IntegerPartitions[n], Select[Permutations[#], wigQ]=={}&]], {n, 0, 15}]
CROSSREFS
Excluding twins (x,x) gives A344654, complement A344740.
The normal case is A345162, complement A345163.
The complement is counted by A345170, ranked by A345172.
The Heinz numbers of these partitions are A345171.
The version for factorizations is A348380, complement A348379.
A version for ordered factorizations is A348613, complement A348610.
A000041 counts integer partitions.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.
A345164 counts alternating permutations of prime indices, w/ twins A344606.
A345192 counts non-alternating compositions, without twins A348377.
Sequence in context: A240495 A304393 A325535 * A062405 A368180 A071181
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 12 2021
EXTENSIONS
a(26) onwards by Joseph Likar, Aug 21 2023
STATUS
editing